@article{bwmeta1.element.bwnjournal-article-cmv65i1p139bwm, author = {Deszcz, Ryszard}, title = {Curvature properties of certain compact pseudosymmetric manifolds}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {139-147}, zbl = {0823.53030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p139bwm} }
Deszcz, Ryszard. Curvature properties of certain compact pseudosymmetric manifolds. Colloquium Mathematicae, Tome 66 (1993) pp. 139-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv65i1p139bwm/
[000] [1] A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59. | Zbl 0534.53019
[001] [2] A. L. Besse, Einstein Manifolds, Springer, Berlin 1987. | Zbl 0613.53001
[002] [3] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. | Zbl 0191.52002
[003] [4] F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R·R = Q(S,R), in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore 1991, 108-130.
[004] [5] F. Defever and R. Deszcz, A note on geodesic mappings of pseudosymmetric Riemannian manifolds, Colloq. Math. 62 (1991), 313-319. | Zbl 0810.53008
[005] [6] F. Defever and R. Deszcz, On warped product manifolds satisfying a certain curvature condition, Atti Acad. Peloritana Cl. Sci. Fis. Mat. Natur., in print. | Zbl 0780.53017
[006] [7] F. Defever and R. Deszcz, On Riemannian manifolds satisfying a certain curvature condition imposed on the Weyl curvature tensor, Acta Univ. Palackiensis, in print. | Zbl 0796.53016
[007] [8] J. Deprez, R. Deszcz and L. Verstraelen, Pseudosymmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Toulouse 9 (1988), 183-192. | Zbl 0668.53010
[008] [9] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65. | Zbl 0678.53022
[009] [10] R. Deszcz, Notes on totally umbilical submanifolds, in: Geometry and Topology of Submanifolds, Luminy, May 1987, World Sci., Singapore 1989, 89-97. | Zbl 0735.53042
[010] [11] R. Deszcz, Examples of four-dimensional Riemannian manifolds satisfying some pseudosymmetry curvature conditions, in: Geometry and Topology of Submanifolds, II, Avignon, May 1988, World Sci., Singapore 1990, 134-143.
[011] [12] R. Deszcz, On conformally flat Riemannian manifold satisfying certain curvature conditions, Tensor (N.S.) 49 (1990), 134-145. | Zbl 0742.53006
[012] [13] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103-120. | Zbl 0738.53008
[013] [14] R. Deszcz, Pseudosymmetry curvature conditions imposed on the shape operators of hypersurfaces in the affine space, Results in Math. 20 (1991), 600-621. | Zbl 0752.53009
[014] [15] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322. | Zbl 0633.53031
[015] [16] R. Deszcz and W. Grycak, On manifolds satisfying some curvature conditions, Colloq. Math. 57 (1989), 89-92. | Zbl 0698.53011
[016] [17] R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, ibid. 58 (1990), 259-268. | Zbl 0707.53019
[017] [18] R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, Bull. Inst. Math. Acad. Sinica 16 (1988), 251-262. | Zbl 0668.53007
[018] [19] R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore 1991, 131-147.
[019] [20] R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Rel. Grav. 23 (1991), 671-681. | Zbl 0723.53009
[020] [21] G. I. Kruchkovich, On semi-reducible Riemannian spaces, Dokl. Akad. Nauk SSSR 115 (1957), 862-865 (in Russian). | Zbl 0080.37301
[021] [22] J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajdoszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813.
[022] [23] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333-340. | Zbl 0115.39302
[023] [24] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582. | Zbl 0508.53025