Tame Lp-multipliers
Hare, Kathryn
Colloquium Mathematicae, Tome 66 (1993), p. 303-314 / Harvested from The Polish Digital Mathematics Library

We call an Lp-multiplier m tame if for each complex homomorphism χ acting on the space of Lp multipliers there is some γ0Γ and |a| ≤ 1 such that χ(γm)=am(γ0γ) for all γ ∈ Γ. Examples of tame multipliers include tame measures and one-sided Riesz products. Tame multipliers show an interesting similarity to measures. Indeed we show that the only tame idempotent multipliers are measures. We obtain quantitative estimates on the size of Lp-improving tame multipliers which are similar to those obtained for measures, but are false for non-tame multipliers. One-sided Riesz products are seen to play a similar role in the study of tame multipliers as Riesz products do in the study of measures.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210194
@article{bwmeta1.element.bwnjournal-article-cmv64i2p303bwm,
     author = {Kathryn Hare},
     title = {Tame $L^p$-multipliers},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {303-314},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p303bwm}
}
Hare, Kathryn. Tame $L^p$-multipliers. Colloquium Mathematicae, Tome 66 (1993) pp. 303-314. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p303bwm/

[000] [1] G. Brown, Riesz products and generalized characters, Proc. London Math. Soc. 30 (1975), 209-238. | Zbl 0325.43003

[001] [2] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212. | Zbl 0099.25504

[002] [3] J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.

[003] [4] R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982. | Zbl 0599.42001

[004] [5] C. Graham, K. Hare and D. Ritter, The size of Lp-improving measures, J. Funct. Anal. 84 (1989), 472-495. | Zbl 0678.43001

[005] [6] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979. | Zbl 0439.43001

[006] [7] A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186. | Zbl 0046.11702

[007] [8] K. Hare, A characterization of Lp-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299. | Zbl 0664.43001

[008] [9] K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155. | Zbl 0603.43003

[009] [10] K. Hare, Properties and examples of (Lp,Lq) multipliers, Indiana Univ. Math. J. 38 (1989), 211-227. | Zbl 0655.43003

[010] [11] K. Hare, Union results for thin sets, Glasgow Math. J. 32 (1990), 241-254. | Zbl 0714.43010

[011] [12] K. Hare, The size of (L2,Lp) multipliers, Colloq. Math. 63 (1992), 249-262. | Zbl 0795.43005

[012] [13] B. Host et F. Parreau, Ensembles de Rajchman et ensembles de continuité, C. R. Acad. Sci. Paris 288 (1979), 899-902. | Zbl 0422.43009

[013] [14] B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289. | Zbl 0466.43005

[014] [15] I. Klemes, Idempotent multipliers of H1(T), Canad. J. Math. 39 (1987), 1223-1234.

[015] [16] R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York 1971.

[016] [17] J. F. Méla, Mesures ε-idempotentes de norme bornée, Studia Math. 72 (1982), 131-149. | Zbl 0503.43004

[017] [18] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113-117. | Zbl 0501.42007

[018] [19] A. Rajchman, Une classe de séries trigonométriques qui convergent presque partout vers zéro, Math. Ann. 101 (1929), 686-700. | Zbl 55.0162.04

[019] [20] L. T. Ramsey and B. B. Wells, Jr., Fourier-Stieltjes transforms of strongly continuous measures, Michigan Math. J. 24 (1977), 13-19. | Zbl 0346.43004

[020] [21] C. Rickart, The General Theory of Banach Algebras, Van Nostrand, Princeton 1960.

[021] [22] D. Ritter, Most Riesz product measures are Lp-improving, Proc. Amer. Math. Soc. 97 (1986), 291-295. | Zbl 0593.43002