Refining the idea used in [24] and employing very careful computation, the present paper shows that for 0 < p ≤ ∞ and k ≥ 1, there exists a function , with for x ∈ [0,1] and for x ∈ [-1,0], such that lim supn→∞ (en(k)(f)p) / (ωk+2+[1/p](f,n-1)p) = + ∞ where is the best approximation of degree n to f in by polynomials which are comonotone with f, that is, polynomials P so that for all x ∈ [-1,1]. This theorem, which is a particular case of a more general one, gives a complete solution to the converse result in comonotone approximation in space for 1 < p ≤ ∞.
@article{bwmeta1.element.bwnjournal-article-cmv64i2p265bwm, author = {Xiang Wu and Song Zhou}, title = {A counterexample in comonotone approximation in $L^p$ space}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {265-274}, zbl = {0894.41009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p265bwm} }
Wu, Xiang; Zhou, Song. A counterexample in comonotone approximation in $L^p$ space. Colloquium Mathematicae, Tome 66 (1993) pp. 265-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p265bwm/
[000] [1] R. K. Beatson, The degree of monotone approximation, Pacific J. Math. 74 (1978), 5-14. | Zbl 0349.41005
[001] [2] R. K. Beatson and D. Leviatan, On comonotone approximation, Canad. Math. Bull. 26 (1983), 220-224. | Zbl 0476.41008
[002] [3] R. A. DeVore, Degree of approximation, in: Approximation Theory II, Academic Press, New York 1976, 117-162.
[003] [4] R. A. DeVore, Monotone approximation by polynomials, SIAM J. Math. Anal. 8 (1977), 906-921. | Zbl 0368.41002
[004] [5] R. A. DeVore and X. M. Yu, Pointwise estimates for monotone polynomial approximation, Constr. Approx. 1 (1985), 323-331. | Zbl 0583.41006
[005] [6] M. Hasson, Functions f for which is exactly of the order , in: Approximation Theory III, Academic Press, New York 1980, 491-494.
[006] [7] G. L. Iliev, Exact estimates for partially monotone approximation, Anal. Math. 4 (1978), 181-197. | Zbl 0452.41011
[007] [8] D. Leviatan, The behavior of the derivatives of the algebraic polynomials of best approximation, J. Approx. Theory 35 (1982), 169-176. | Zbl 0489.41016
[008] [9] D. Leviatan, Monotone and comonotone polynomial approximation revisited, ibid. 53 (1988), 1-16. | Zbl 0697.41001
[009] [10] D. Leviatan, Monotone polynomial approximation, Rocky Mountain J. Math. 19 (1989), 231-241. | Zbl 0688.41005
[010] [11] G. G. Lorentz, Monotone approximation, in: Inequalities III, Academic Press, New York 1972, 201-215.
[011] [12] G. G. Lorentz and K. Zeller, Degree of approximation by monotone polynomials I, J. Approx. Theory 1 (1968), 501-504. | Zbl 0172.07901
[012] [13] G. G. Lorentz and K. Zeller, Degree of approximation by monotone polynomials II, ibid. 2 (1969), 265-269. | Zbl 0175.06102
[013] [14] P. G. Nevai, Bernstein’s inequality in for 0
| Zbl 0432.41009
[014] [15] D. J. Newman, Efficient comonotone approximation, ibid. 25 (1979), 189-192.
[015] [16] E. Passow and L. Raymon, Monotone and comonotone approximation, Proc. Amer. Math. Soc. 42 (1974), 390-394. | Zbl 0278.41020
[016] [17] E. Passow, L. Raymon and J. A. Roulier, Comonotone polynomial approximation, J. Approx. Theory 11 (1974), 221-224. | Zbl 0284.41003
[017] [18] J. A. Roulier, Monotone approximation of certain classes of functions, ibid. 1 (1968), 319-324. | Zbl 0167.04902
[018] [19] J. A. Roulier, Some remarks on the degree of monotone approximation, ibid. 14 (1975), 225-229. | Zbl 0304.41006
[019] [20] O. Shisha, Monotone approximation, Pacific J. Math. 15 (1965), 667-671. | Zbl 0148.29302
[020] [21] A. S. Shvedov, Jackson’s theorem in , , for algebraic polynomials, and orders of comonotone approximation, Math. Notes 25 (1979), 57-65. | Zbl 0468.41009
[021] [22] A. S. Shvedov, Orders of coapproximation of functions by algebraic polynomials, ibid. 29 (1981), 63-70. | Zbl 0506.41004
[022] [23] X. Wu and S. P. Zhou, A problem on coapproximation of functions by algebraic polynomials, in: Progress in Approximation Theory, P. Nevai and A. Pinkus (eds.), Academic Press, New York 1991, 857-866.
[023] [24] X. Wu and S. P. Zhou, On a counterexample in monotone approximation, J. Approx. Theory 69 (1992), 205-211. | Zbl 0771.41014
[024] [25] X. M. Yu, Pointwise estimates for convex polynomial approximation, Approx. Theory Appl. 1 (4) (1985), 65-74. | Zbl 0621.41011
[025] [26] X. M. Yu, Degree of comonotone polynomial approximation, ibid. 4 (3) (1988), 73-78; MR 90c:41042.
[026] [27] X. M. Yu and Y. P. Ma, Generalized monotone approximation in space, Acta Math. Sinica (N.S.) 5(1989), 48-56; MR 90d:41014.
[027] [28] S. P. Zhou, A proof of a theorem of Hasson, Vestnik Beloruss. Gos. Univ. Ser. I Fiz. Mat. Mekh. 1988 (3), 56-58, 79 (in Russian); MR 89m:41006.