Let E be a Sidon subset of the integers and suppose X is a Banach space. Then Pisier has shown that E-spectral polynomials with values in X behave like Rademacher sums with respect to -norms. We consider the situation when X is a quasi-Banach space. For general quasi-Banach spaces we show that a similar result holds if and only if E is a set of interpolation (-set). However, for certain special classes of quasi-Banach spaces we are able to prove such a result for larger sets. Thus if X is restricted to be “natural” then the result holds for all Sidon sets. We also consider spaces with plurisubharmonic norms and introduce the class of analytic Sidon sets.
@article{bwmeta1.element.bwnjournal-article-cmv64i2p233bwm, author = {N. Kalton}, title = {On vector-valued inequalities for Sidon sets and sets of interpolation}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {233-244}, zbl = {0838.43007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p233bwm} }
Kalton, N. On vector-valued inequalities for Sidon sets and sets of interpolation. Colloquium Mathematicae, Tome 66 (1993) pp. 233-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p233bwm/
[000] [1] N. Asmar and S. J. Montgomery-Smith, On the distribution of Sidon series, Ark. Mat., to appear. | Zbl 0836.43011
[001] [2] D. Grow, A class of -sets, Colloq. Math. 53 (1987), 111-124.
[002] [3] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, ibid. 12 (1964), 23-39. | Zbl 0145.32101
[003] [4] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, II, ibid. 15 (1966), 79-86.
[004] [5] J.-P. Kahane, Ensembles de Ryll-Nardzewski et ensembles de Helson, ibid. 15 (1966), 87-92. | Zbl 0144.34202
[005] [6] N. J. Kalton, Banach envelopes of non-locally convex spaces, Canad. J. Math. 38 (1986), 65-86. | Zbl 0577.46016
[006] [7] N. J. Kalton, Plurisubharmonic functions on quasi-Banach spaces, Studia Math. 84 (1986), 297-324. | Zbl 0625.46021
[007] [8] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman, ibid. 29 (1968), 167-193. | Zbl 0155.18802
[008] [9] J.-F. Méla, Sur certains ensembles exceptionnels en analyse de Fourier, Ann. Inst. Fourier (Grenoble) 18 (2) (1968), 32-71. | Zbl 0187.07202
[009] [10] J. Mycielski, On a problem of interpolation by periodic functions, Colloq. Math. 8 (1961), 95-97. | Zbl 0102.05302
[010] [11] A. Pełczyński, Commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531. | Zbl 0693.46044
[011] [12] G. Pisier, Les inégalités de Kahane-Khintchin d'après C. Borell, in: Séminaire sur la géométrie des espaces de Banach, Ecole Polytechnique, Palaiseau, Exposé VII, 1977-78.
[012] [13] C. Ryll-Nardzewski, Concerning almost periodic extensions of functions, Colloq. Math. 12 (1964), 235-237. | Zbl 0133.04303
[013] [14] E. Strzelecki, Some theorems on interpolation by periodic functions, ibid. 12 (1964), 239-248. | Zbl 0133.02003