@article{bwmeta1.element.bwnjournal-article-cmv64i2p193bwm, author = {J. Dudek}, title = {A characterization of modular lattices}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {193-201}, zbl = {0813.06008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p193bwm} }
Dudek, J. A characterization of modular lattices. Colloquium Mathematicae, Tome 66 (1993) pp. 193-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv64i2p193bwm/
[000] [1] J. Dudek, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191. | Zbl 0555.20035
[001] [2] J. Dudek, Varieties of idempotent commutative groupoids, ibid., 193-204. | Zbl 0546.20049
[002] [3] J. Dudek, A polynomial characterization of some idempotent algebras, Acta Sci. Math. (Szeged) 50 (1985), 39-49. | Zbl 0616.08011
[003] [4] J. Dudek, On the minimal extension of sequences, Algebra Universalis 23 (1986), 308-312. | Zbl 0627.08001
[004] [5] J. Dudek, A polynomial characterization of nondistributive modular lattices, Colloq. Math. 55 (1988), 195-212. | Zbl 0665.08005
[005] [6] J. Dudek, Characterizations of distributive lattices, to appear. | Zbl 1193.06008
[006] [7] J. Dudek and A. Kisielewicz, On finite models of regular identities, Notre Dame J. Formal Logic 30 (2) (1989), 624-628. | Zbl 0694.03025
[007] [8] G. Grätzer, Compositions of functions, in: Proc. Conference on Universal Algebra (Kingston, 1969), Queen's Univ., Kingston, Ont., 1970, 1-106.
[008] [9] G. Grätzer, Universal Algebra, 2nd ed., Springer, New York 1979.
[009] [10] G. Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra I, Pacific J. Math. 32 (1970), 697-709. | Zbl 0215.06301
[010] [11] J. Luo, Characterizations of distributive bisemilattices and modular lattices, Acta Sci. Natur. Univ. Intramongolicae 18 (4) (1987), 623-633. | Zbl 1332.06006
[011] [12] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247. | Zbl 0187.28702
[012] [13] W. Taylor, Equational logic, Houston J. Math. 5 (1979), Survey, 1-83. | Zbl 0421.08004