In this paper we show that the fractional integral of order α on spaces of homogeneous type embeds into a certain Orlicz space. This extends results of Trudinger [T], Hedberg [H], and Adams-Bagby [AB].
@article{bwmeta1.element.bwnjournal-article-cmv64i1p121bwm, author = {A. Gatto and Stephen V\'agi}, title = {On the exponential integrability of fractional integrals on spaces of homogeneous type}, journal = {Colloquium Mathematicae}, volume = {66}, year = {1993}, pages = {121-127}, zbl = {1002.42501}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv64i1p121bwm} }
Gatto, A.; Vági, Stephen. On the exponential integrability of fractional integrals on spaces of homogeneous type. Colloquium Mathematicae, Tome 66 (1993) pp. 121-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv64i1p121bwm/
[000] [AB] D. R. Adams and R. J. Bagby, Translation-dilation invariant estimates for Riesz potentials, Indiana Univ. Math. J. 23 (1974), 1051-1067. | Zbl 0276.31003
[001] [CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[002] [GV] A. E. Gatto and S. Vági, Fractional integrals on spaces of homogeneous type, in: Analysis and Partial Differential Equations, C. Sadosky (ed.), Dekker, New York 1990, 171-216.
[003] [H] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. | Zbl 0283.26003
[004] [JN] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1964), 415-426. | Zbl 0102.04302
[005] [T] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. | Zbl 0163.36402
[006] [Z] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge 1959. | Zbl 0085.05601