Chain rules for canonical state extensions on von Neumann algebras
Cecchini, Carlo ; Petz, Dénes
Colloquium Mathematicae, Tome 66 (1993), p. 115-119 / Harvested from The Polish Digital Mathematics Library

In previous papers we introduced and studied the extension of a state defined on a von Neumann subalgebra to the whole of the von Neumann algebra with respect to a given state. This was done by using the standard form of von Neumann algebras. In the case of the existence of a norm one projection from the algebra to the subalgebra preserving the given state our construction is simply equivalent to taking the composition with the norm one projection. In this paper we study couples of von Neumann subalgebras in connection with the state extension. We establish some results on the ω-conditional expectation and give a necessary and sufficient condition for the chain rule of our state extension to be true.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:210160
@article{bwmeta1.element.bwnjournal-article-cmv64i1p115bwm,
     author = {Cecchini, Carlo and Petz, D\'enes},
     title = {Chain rules for canonical state extensions on von Neumann algebras},
     journal = {Colloquium Mathematicae},
     volume = {66},
     year = {1993},
     pages = {115-119},
     zbl = {0844.46034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv64i1p115bwm}
}
Cecchini, Carlo; Petz, Dénes. Chain rules for canonical state extensions on von Neumann algebras. Colloquium Mathematicae, Tome 66 (1993) pp. 115-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv64i1p115bwm/

[000] [1] L. Accardi and C. Cecchini, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982), 245-273. | Zbl 0483.46043

[001] [2] C. Cecchini and D. Petz, State extension and a Radon-Nikodym theorem for conditional expectations on von Neumann algebras, Pacific J. Math. 138 (1989), 9-24. | Zbl 0695.46024

[002] [3] C. Cecchini and D. Petz, Classes of conditional expectations over von Neumann algebras, J. Funct. Anal. 92 (1990), 8-29.

[003] [4] A. Connes, Sur le théorème de Radon-Nikodym pour les poids normaux fidèles semifinis, Bull. Sci. Math. Sect. II 97 (1973), 253-258.

[004] [5] A. Connes, On a spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), 153-164. | Zbl 0443.46042

[005] [6] D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Comm. Math. Phys. 105 (1986), 123-131. | Zbl 0597.46067