@article{bwmeta1.element.bwnjournal-article-cmv63i2p315bwm, author = {Luis Gonz\'alez}, title = {Omnipresent holomorphic operators and maximal cluster sets}, journal = {Colloquium Mathematicae}, volume = {63}, year = {1992}, pages = {315-322}, zbl = {0764.30028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p315bwm} }
González, Luis. Omnipresent holomorphic operators and maximal cluster sets. Colloquium Mathematicae, Tome 63 (1992) pp. 315-322. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p315bwm/
[000] [1] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, 1966. | Zbl 0149.03003
[001] [2] J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966.
[002] [3] S. Kierst et E. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, Fund. Math. 21 (1933), 276-294. | Zbl 59.0328.02
[003] [4] S. Kierst et E. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, C. R. Acad. Sci. Paris 196 (1933), 1453-1455. | Zbl 59.0328.01
[004] [5] K. Noshiro, Cluster Sets, Springer, Berlin 1960.
[005] [6] J. C. Oxtoby, Measure and Category, 2nd ed., Springer, New York 1980. | Zbl 0435.28011
[006] [7] W. Rudin, Real and Complex Analysis, 2nd ed., Tata McGraw-Hill, Faridabad, India, 1974. | Zbl 0278.26001
[007] [8] S. Saks and A. Zygmund, Analytic Functions, 3rd ed., PWN and Elsevier, Warszawa-Amsterdam 1971. | Zbl 0048.30803