Omnipresent holomorphic operators and maximal cluster sets
González, Luis
Colloquium Mathematicae, Tome 63 (1992), p. 315-322 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:210157
@article{bwmeta1.element.bwnjournal-article-cmv63i2p315bwm,
     author = {Luis Gonz\'alez},
     title = {Omnipresent holomorphic operators and maximal cluster sets},
     journal = {Colloquium Mathematicae},
     volume = {63},
     year = {1992},
     pages = {315-322},
     zbl = {0764.30028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p315bwm}
}
González, Luis. Omnipresent holomorphic operators and maximal cluster sets. Colloquium Mathematicae, Tome 63 (1992) pp. 315-322. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p315bwm/

[000] [1] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, 1966. | Zbl 0149.03003

[001] [2] J. Horváth, Topological Vector Spaces and Distributions, Vol. I, Addison-Wesley, Reading, Mass., 1966.

[002] [3] S. Kierst et E. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, Fund. Math. 21 (1933), 276-294. | Zbl 59.0328.02

[003] [4] S. Kierst et E. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, C. R. Acad. Sci. Paris 196 (1933), 1453-1455. | Zbl 59.0328.01

[004] [5] K. Noshiro, Cluster Sets, Springer, Berlin 1960.

[005] [6] J. C. Oxtoby, Measure and Category, 2nd ed., Springer, New York 1980. | Zbl 0435.28011

[006] [7] W. Rudin, Real and Complex Analysis, 2nd ed., Tata McGraw-Hill, Faridabad, India, 1974. | Zbl 0278.26001

[007] [8] S. Saks and A. Zygmund, Analytic Functions, 3rd ed., PWN and Elsevier, Warszawa-Amsterdam 1971. | Zbl 0048.30803