A characterization of completely bounded multipliers of Fourier algebras
Jolissaint, Paul
Colloquium Mathematicae, Tome 63 (1992), p. 311-313 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:210156
@article{bwmeta1.element.bwnjournal-article-cmv63i2p311bwm,
     author = {Paul Jolissaint},
     title = {A characterization of completely bounded multipliers of Fourier algebras},
     journal = {Colloquium Mathematicae},
     volume = {63},
     year = {1992},
     pages = {311-313},
     zbl = {0774.43003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p311bwm}
}
Jolissaint, Paul. A characterization of completely bounded multipliers of Fourier algebras. Colloquium Mathematicae, Tome 63 (1992) pp. 311-313. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p311bwm/

[000] [BF] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. (6) 3-A (1984), 297-302. | Zbl 0564.43004

[001] [dCH] J. de Cannière and U. Haagerup, Multipliers of the Fourier algebra of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1984), 455- 500.

[002] [CH] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507-549. | Zbl 0681.43012

[003] J. Dixmier, C*-Algebras, North-Holland, Amsterdam 1982.

[004] [Gi] J. E. Gilbert, Lp-convolution operators and tensor products of Banach spaces I, II, III, preprints.

[005] [Pau] V. I. Paulsen, Completely Bounded Maps and Dilations, Longman Scientific & Technical, Harlow 1986.