A complete generalization of Yokoi's p-invariants
Mollin, R. ; Williams, H.
Colloquium Mathematicae, Tome 63 (1992), p. 285-294 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:210153
@article{bwmeta1.element.bwnjournal-article-cmv63i2p285bwm,
     author = {R. Mollin and H. Williams},
     title = {A complete generalization of Yokoi's p-invariants},
     journal = {Colloquium Mathematicae},
     volume = {63},
     year = {1992},
     pages = {285-294},
     zbl = {0762.11035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p285bwm}
}
Mollin, R.; Williams, H. A complete generalization of Yokoi's p-invariants. Colloquium Mathematicae, Tome 63 (1992) pp. 285-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p285bwm/

[000] [1] H. Cohn, A Second Course in Number Theory, Wiley, New York 1962.

[001] [2] G. Degert, Über die Bestimmung der Grundeinheit gewisser reel-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg 22 (1958), 92-97. | Zbl 0079.05803

[002] [3] H. Hasse, Über mehrklassige aber eingeschlechtige reel-quadratische Zahlkörper, Elemente Math. 20 (1965), 49-59. | Zbl 0128.03502

[003] [4] R. A. Mollin, On the insolubility of a class of Diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type, Nagoya Math. J. 105 (1987), 39-47. | Zbl 0591.12005

[004] [5] R. A. Mollin, Class number one criteria for real quadratic fields I, Proc. Japan Acad. Ser. A 63 (1987), 121-125. | Zbl 0625.12002

[005] [6] R. A. Mollin and P. G. Walsh, A note on powerful numbers, quadratic fields and the pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 109-114. | Zbl 0595.10002

[006] [7] R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, in: Number Theory, J. M. De Koninck and C. Levesque (eds.), Walter de Gruyter, Berlin 1989, 654-663. | Zbl 0695.12002

[007] [8] R. A. Mollin and H. C. Williams, Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception), in: Number Theory, R. A. Mollin (ed.), Walter de Gruyter, Berlin 1990, 417-425. | Zbl 0696.12004

[008] [9] R. A. Mollin and H. C. Williams, Class number one for real quadratic fields, continued fractions and reduced ideals, in: Number Theory and Applications, R. A. Mollin (ed.), NATO ASI Ser. C265, Kluwer, Dordrecht 1989, 481-496. | Zbl 0714.11067

[009] [10] R. A. Mollin and H. C. Williams, On prime valued polynomials and class numbers of real quadratic fields, Nagoya Math. J. 112 (1988), 143-151. | Zbl 0629.12004

[010] [11] T. Nagell, Number Theory, Chelsea, New York 1981.

[011] [12] C. Richaud, Sur la résolution des équations x2-Ay2=±1, Atti Acad. Pontif. Nouvi Lincei (1866), 177-182.

[012] [13] T. Tatuzawa, On a theorem of Siegel, Japan J. Math. 21 (1951), 163-178. | Zbl 0054.02302

[013] [14] H. Yokoi, New invariants of real quadratic fields, in: Number Theory, R. A. Mollin (ed.), Walter de Gruyter, Berlin 1990, 635-639. | Zbl 0693.12004

[014] [15] H. Yokoi, Class number one problem for real quadratic fields (The conjecture of Gauss), Proc. Japan Acad. Ser. A 64 (1988), 53-55. | Zbl 0662.12006

[015] [16] H. Yokoi, Some relations among new invariants of prime number p congruent to 1 (mod 4), in: Investigations in Number Theory, Adv. Stud. in Pure Math. 13, 1988, 493-501.

[016] [17] H. Yokoi, The fundamental unit and class number one problem of real quadratic fields with prime discriminant, preprint. | Zbl 0715.11057

[017] [18] H. Yokoi, Bounds for fundamental units and class numbers of real quadratic fields with prime discriminant, preprint. | Zbl 0715.11057

[018] [19] H. Yokoi, On the fundamental unit of real quadratic fields with norm 1, J. Number Theory 2 (1970), 106-115. | Zbl 0201.05703

[019] [20] H. Yokoi, On real quadratic fields containing units with norm -1, Nagoya Math. J. 33 (1968), 139-152. | Zbl 0167.04401