@article{bwmeta1.element.bwnjournal-article-cmv63i2p249bwm, author = {Kathryn Hare}, title = {The size of $(L^2,L^p)$ multipliers}, journal = {Colloquium Mathematicae}, volume = {63}, year = {1992}, pages = {249-262}, zbl = {0795.43005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p249bwm} }
Hare, Kathryn. The size of $(L^2,L^p)$ multipliers. Colloquium Mathematicae, Tome 63 (1992) pp. 249-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p249bwm/
[000] [1] H. Beckner, S. Janson and J. Jerison, Convolution inequalities on the circle, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (W. Beckner et al., eds.), Wadsworth, Belmont 1983, 32-43.
[001] [2] A. Bonami, Étude des coefficients de Fourier des fonctions de , Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402. | Zbl 0195.42501
[002] [3] M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), 75-83. | Zbl 0644.42011
[003] [4] R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982. | Zbl 0599.42001
[004] [5] C. Graham, K. Hare and D. Ritter, The size of -improving measures, J. Funct. Anal. 84 (1989), 472-495. | Zbl 0678.43001
[005] [6] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979. | Zbl 0439.43001
[006] [7] K. Hare, A characterization of -improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299. | Zbl 0664.43001
[007] [8] K. Hare, Properties and examples of multipliers, Indiana Univ. Math. J. 38 (1989), 211-227. | Zbl 0655.43003
[008] [9] R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York, 1971.
[009] [10] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Marcel Dekker, New York 1975.
[010] [11] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 67 (1982), 113-117. | Zbl 0501.42007
[011] [12] J. Price, Some strict inclusions between spaces of -multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330. | Zbl 0216.14802
[012] [13] D. Ritter, Most Riesz product mesures are -improving, Proc. Amer. Math. Soc. 97 (1986), 291-295. | Zbl 0593.43002
[013] [14] D. Ritter, Some singular measures on the circle which improve spaces, Colloq. Math. 52 (1987), 133-144. | Zbl 0637.43002
[014] [15] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. | Zbl 0091.05802
[015] [16] E. M. Stein, Harmonic analysis on , in: Studies in Harmonic Analysis, MAA Stud. Math. 13, J. M. Ash (ed.), 1976, 97-135.