@article{bwmeta1.element.bwnjournal-article-cmv63i2p219bwm, author = {Jianwen Zhang}, title = {Some characterizations of Bloch functions on strongly pseudoconvex domains}, journal = {Colloquium Mathematicae}, volume = {63}, year = {1992}, pages = {219-232}, zbl = {0761.32005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p219bwm} }
Zhang, Jianwen. Some characterizations of Bloch functions on strongly pseudoconvex domains. Colloquium Mathematicae, Tome 63 (1992) pp. 219-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p219bwm/
[000] [1] S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332. | Zbl 0633.47014
[001] [2] S. G. Krantz and D. Ma, Bloch functions on strongly pseudoconvex domains, In- diana Univ. Math. J. 37 (1988), 145-163. | Zbl 0628.32006
[002] [3] H. L. Royden, Remarks on the Kobayashi metric, in: Several Complex Variables, II (Proc. Internat. Conf., Univ. of Maryland, College Park, Md., 1970), Lecture Notes in Math. 185, Springer, Berlin 1971, 125-137.
[003] [4] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton University Press, 1972. | Zbl 0242.32005
[004] [5] R. M. Timoney, A necessary and sufficient condition for Bloch functions, Proc. Amer. Math. Soc. 71 (1978), 263-266. | Zbl 0408.30038
[005] [6] R. M. Timoney, Bloch functions in several complex variables, I, Bull. London Math. Soc. 12 (1980), 241-267. | Zbl 0416.32010