This paper is a continuation of a recent paper [2], in which the authors studied some Markov matrices arising from a mapping T:ℤ → ℤ, which generalizes the famous 3x+1 mapping of Collatz. We extended T to a mapping of the polyadic numbers and construct finitely many ergodic Borel measures on which heuristically explain the limiting frequencies in congruence classes, observed for integer trajectories.
@article{bwmeta1.element.bwnjournal-article-cmv63i2p191bwm, author = {K. Matthews}, title = {Some Borel measures associated with the generalized Collatz mapping}, journal = {Colloquium Mathematicae}, volume = {63}, year = {1992}, pages = {191-202}, zbl = {0769.11006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p191bwm} }
Matthews, K. Some Borel measures associated with the generalized Collatz mapping. Colloquium Mathematicae, Tome 63 (1992) pp. 191-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p191bwm/
[000] [1] P. Billingsley, Ergodic Theory and Information, Wiley, New York 1965. | Zbl 0141.16702
[001] [2] R. N. Buttsworth and K. R. Matthews, On some Markov matrices arising from the generalized Collatz mapping, Acta Arith. 55 (1990), 43-57. | Zbl 0653.10004
[002] [3] K. L. Chung, Markov Chains, Springer, Berlin 1960. | Zbl 0122.36601
[003] [4] K. R. Matthews and A. M. Watts, A generalization of Hasse's generalization of the Syracuse algorithm, Acta Arith. 43 (1984), 167-175. | Zbl 0479.10006
[004] [5] K. R. Matthews and A. M. Watts, A Markov approach to the generalized Syracuse algorithm, ibid. 45 (1985), 29-42. | Zbl 0521.10008
[005] [6] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York 1967. | Zbl 0153.19101
[006] [7] M. Pearl, Matrix Theory and Finite Mathematics, McGraw-Hill, New York 1973.
[007] [8] A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., Providence, R.I., 1988. | Zbl 0641.10001
[008] [9] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493. | Zbl 0079.08901