@article{bwmeta1.element.bwnjournal-article-cmv63i2p153bwm, author = {Jacek Dziuba\'nski}, title = {Schwartz spaces associated with some non-differential convolution operators on homogeneous groups}, journal = {Colloquium Mathematicae}, volume = {63}, year = {1992}, pages = {153-161}, zbl = {0799.46039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p153bwm} }
Dziubański, Jacek. Schwartz spaces associated with some non-differential convolution operators on homogeneous groups. Colloquium Mathematicae, Tome 63 (1992) pp. 153-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv63i2p153bwm/
[000] [1] J. Dziubański, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. | Zbl 0711.43003
[001] [2] J. Dziubański, Asymptotic behaviour of densities of stable semigroups of measures, Probab. Theory Related Fields 87 (1991), 459-467. | Zbl 0695.60013
[002] [3] G. M. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton 1982. | Zbl 0508.42025
[003] [4] P. Głowacki, Stable semigroups of measures on the Heisenberg groups, Studia Math. 79 (1984), 105-138. | Zbl 0563.43002
[004] [5] P. Głowacki, Stable semigroups of measures as commutative approximate identities on non- graded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006
[005] [6] A. Hulanicki, A class of convolution semigroups of measures on Lie groups, in: Lecture Notes in Math. 829, Springer, Berlin 1980, 82-101.
[006] [7] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266. | Zbl 0595.43007
[007] [8] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton University Press, Princeton 1970. | Zbl 0193.10502