@article{bwmeta1.element.bwnjournal-article-cmv62i2p313bwm, author = {Filip Defever and Ryszard Deszcz}, title = {A note on geodesic mappings of pseudosymmetric Riemannian manifolds}, journal = {Colloquium Mathematicae}, volume = {62}, year = {1991}, pages = {313-319}, zbl = {0810.53008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p313bwm} }
Defever, Filip; Deszcz, Ryszard. A note on geodesic mappings of pseudosymmetric Riemannian manifolds. Colloquium Mathematicae, Tome 62 (1991) pp. 313-319. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p313bwm/
[000] [1] A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59. | Zbl 0534.53019
[001] [2] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65. | Zbl 0678.53022
[002] [3] R. Deszcz, On pseudosymmetric warped product manifolds, J. Geom., to appear. | Zbl 0843.53011
[003] [4] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322. | Zbl 0633.53031
[004] [5] R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, ibid. 16 (1988), 251-262. | Zbl 0668.53007
[005] [6] R. Deszcz and M. Hotloś, Notes on pseudosymmetric manifolds admitting special geodesic mappings, Soochow J. Math. 15 (1989), 19-27. | Zbl 0696.53014
[006] [7] R. Deszcz, L. Verstraelen and L. Vrancken, On the symmetry of warped product spacetimes, Gen. Relativity Gravitation, in print. | Zbl 0723.53009
[007] [8] J. Mikesh, Geodesic mappings of special Riemannian spaces, in: Topics in Differential Geometry (Hajduszoboszló 1984), Colloq. Math. Soc. János Bolyai 46, Vol. II, North-Holland, Amsterdam 1988, 793-813.
[008] [9] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom. 17 (1982), 531-582. | Zbl 0508.53025
[009] [10] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. II. Global versions, Geom. Dedicata 19 (1985), 65-108. | Zbl 0612.53023