On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor
Endo, Hiroshi
Colloquium Mathematicae, Tome 62 (1991), p. 293-297 / Harvested from The Polish Digital Mathematics Library

For Sasakian manifolds, Matsumoto and Chūman [6] defined the contact Bochner curvature tensor (see also Yano [9]). Hasegawa and Nakane [4] and Ikawa and Kon [5] have studied Sasakian manifolds with vanishing contact Bochner curvature tensor. Such manifolds were studied in the theory of submanifolds by Yano ([9] and [10]). In this paper we define an extended contact Bochner curvature tensor in K-contact Riemannian manifolds and call it the E-contact Bochner curvature tensor. Then we show that a K-contact Riemannian manifold with vanishing E-contact Bochner curvature tensor is a Sasakian manifold.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:210116
@article{bwmeta1.element.bwnjournal-article-cmv62i2p293bwm,
     author = {Hiroshi Endo},
     title = {On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor},
     journal = {Colloquium Mathematicae},
     volume = {62},
     year = {1991},
     pages = {293-297},
     zbl = {0796.53051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p293bwm}
}
Endo, Hiroshi. On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor. Colloquium Mathematicae, Tome 62 (1991) pp. 293-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p293bwm/

[000] [1] D. E. Blair, On the non-existence of flat contact metric structures, Tôhoku Math. J. 28 (1976), 373-379. | Zbl 0364.53013

[001] [2] D. E. Blair, Two remarks on contact metric structures, ibid. 29 (1977), 319-324. | Zbl 0376.53021

[002] [3] H. Endo, Invariant submanifolds in a K-contact Riemannian manifold, Tensor (N.S.) 28 (1974), 154-156.

[003] [4] I. Hasegawa and T. Nakane, On Sasakian manifolds with vanishing contact Bochner curvature tensor II, Hokkaido Math. J. 11 (1982), 44-51. | Zbl 0485.53041

[004] [5] T. Ikawa and M. Kon, Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature, Colloq. Math. 37 (1977), 113-122. | Zbl 0364.53018

[005] [6] M. Matsumoto and G. Chūman, On the C-Bochner tensor, TRU Math. 5 (1969), 21-30.

[006] [7] Z. Olszak, On contact metric manifolds, Tôhoku Math. J. 31 (1979), 247-253.

[007] [8] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700-712. | Zbl 0165.24703

[008] [9] K. Yano, Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Differential Geom. 12 (1977), 153-170. | Zbl 0362.53046

[009] [10] K. Yano, Differential geometry of anti-invariant submanifolds of a Sasakian manifold, Boll. Un. Mat. Ital. 12 (1975), 279-296. | Zbl 0322.53014

[010] [11] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore 1984.