This paper is concerned with the action of a special formally real Jordan algebra U on an Euclidean space E, with the decomposition of E under this action and with an application of this decomposition to the study of Bessel functions on the self-adjoint homogeneous cone associated to U.
@article{bwmeta1.element.bwnjournal-article-cmv62i2p257bwm, author = {Giancarlo Travaglini}, title = {Representations of Jordan algebras and special functions}, journal = {Colloquium Mathematicae}, volume = {62}, year = {1991}, pages = {257-266}, zbl = {0791.17030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p257bwm} }
Travaglini, Giancarlo. Representations of Jordan algebras and special functions. Colloquium Mathematicae, Tome 62 (1991) pp. 257-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p257bwm/
[000] [1] H. Braun and M. Koecher, Jordan-Algebren, Springer, Berlin, 1966.
[001] [2] J. Dorfmeister, Theta functions for the special formally real Jordan algebras, Invent. Math. 44 (1978), 103-108. | Zbl 0378.32019
[002] [3] J. Faraut and G. Travaglini, Bessel functions associated with representations of formally real Jordan algebras, J. Funct. Anal. 71 (1987), 123-141. | Zbl 0612.43009
[003] [4] M. V. Fedoryuk, The stationary phase and pseudodifferential operators, Uspekhi Mat. Nauk 26 (1) (1971), 67-112; English transl.: Russian Math. Surveys 26 (1) (1971), 65-115. | Zbl 0221.47036
[004] [5] K. McCrimmon, Jordan algebras and their applications, Bull. Amer. Math. Soc. 84 (1978), 612-627. | Zbl 0421.17010
[005] [6] I. Satake, Algebraic structure of symmetric domains, Iwanami Shoten and Princeton Univ. Press, Princeton, N.J., 1980. | Zbl 0483.32017