Holomorphic Lipschitz functions and application to the v-problem
Chang, Der-Chen ; Krantz, Steven
Colloquium Mathematicae, Tome 62 (1991), p. 227-256 / Harvested from The Polish Digital Mathematics Library
Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:210111
@article{bwmeta1.element.bwnjournal-article-cmv62i2p227bwm,
     author = {Der-Chen Chang and Steven Krantz},
     title = {Holomorphic Lipschitz functions and application to the $v{$\partial$}$-problem},
     journal = {Colloquium Mathematicae},
     volume = {62},
     year = {1991},
     pages = {227-256},
     zbl = {0798.32003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p227bwm}
}
Chang, Der-Chen; Krantz, Steven. Holomorphic Lipschitz functions and application to the $v{∂}$-problem. Colloquium Mathematicae, Tome 62 (1991) pp. 227-256. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p227bwm/

[000] [1] G. Aladro, The comparability of the Kobayashi approach region and the admissible approach region, Illinois J. Math. 33 (1989), 42-63. | Zbl 0647.32023

[001] [2] J. Belanger, Hölder estimates for in 2, Ph.D. dissertation, Princeton University, 1987.

[002] [3] T. Bloom and I. Graham, A geometric characterization of points of type m on real submanifolds of n, J. Differential Geom. 12 (1977), 171-182. | Zbl 0363.32013

[003] [4] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466. | Zbl 0661.32030

[004] [5] D.-C. Chang, An application of Ricci-Stein Theorem to estimates of the C-R equations, in: Analysis and PDE, C. Sadosky (ed.), Dekker, 1990, 51-84.

[005] [6] M. Christ, Regularity properties of the b equation on weakly pseudoconvex CR manifolds of dimension 3, J. Amer. Math. Soc. 1 (1988), 587-646. | Zbl 0671.35017

[006] [7] J. D'Angelo, Real hypersurfaces, order of contact, and applications, Ann. of Math. 115 (1982), 615-637. | Zbl 0488.32008

[007] [8] C. Fefferman and J. J. Kohn, Hölder estimates on domains in two complex dimensions and on three dimensional CR manifolds, Adv. in Math. 69 (1988), 223-303. | Zbl 0649.35068

[008] [9] J. J. Kohn, Boundary behavior of on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. | Zbl 0256.35060

[009] [10] S. G. Krantz, Fatou Theorems on domains in n, Bull. Amer. Math. Soc. 16 (1987), 93-96. | Zbl 0614.32007

[010] [11] S. G. Krantz, Invariant metrics and boundary behavior of holomorphic functions, J. Geometric Anal. 1 (1991), to appear. | Zbl 0728.32002

[011] [12] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York 1982. | Zbl 0471.32008

[012] [13] S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 3 (1983), 193-260. | Zbl 0518.46018

[013] [14] S. G. Krantz, Smoothness of harmonic and holomorphic functions, in: Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 63-67.

[014] [15] S. G. Krantz, Boundary values and estimates for holomorphic functions of several complex variables, Duke Math. J. 47 (1980), 81-98.

[015] [16] S. G. Krantz, On a theorem of Stein, Trans. Amer. Math. Soc. 320 (1990), 625-642. | Zbl 0707.32002

[016] [17] S. G. Krantz, Characterization of various domains of holomorphy via -estimates and application to a problem of Kohn, Illinois J. Math. 23 (1979), 267-285. | Zbl 0394.32009

[017] [18] S. G. Krantz and D. Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-163. | Zbl 0628.32006

[018] [19] A. Nagel, E. M. Stein and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 6596-6599. | Zbl 0517.32002

[019] [20] A. Nagel, J. -P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegö kernels in 2, Ann. of Math. 129 (1989), 113-149. | Zbl 0667.32016

[020] [21] R. M. Range, On Hölder estimates for u=f on weakly pseudoconvex domains, in: Proc. Internat. Conf., Cortona 1976-1977, Scuola Norm. Sup., Pisa 1978, 247-267.

[021] [22] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445. | Zbl 0257.35040