Some additive properties of special sets of reals
Recław, Ireneusz
Colloquium Mathematicae, Tome 62 (1991), p. 221-226 / Harvested from The Polish Digital Mathematics Library
Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:210110
@article{bwmeta1.element.bwnjournal-article-cmv62i2p221bwm,
     author = {Ireneusz Rec\l aw},
     title = {Some additive properties of special sets of reals},
     journal = {Colloquium Mathematicae},
     volume = {62},
     year = {1991},
     pages = {221-226},
     zbl = {0797.04003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p221bwm}
}
Recław, Ireneusz. Some additive properties of special sets of reals. Colloquium Mathematicae, Tome 62 (1991) pp. 221-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p221bwm/

[000] [1] J. B. Brown and G. V. Cox, Classical theory of totally imperfect spaces, Real Anal. Exchange 7 (1981/82), 185-232. | Zbl 0503.54045

[001] [2] P. Erdős, K. Kunen and R. Mauldin, Some additive properties of sets of real numbers, Fund. Math. 113 (1981), 187-199. | Zbl 0482.28001

[002] [3] W. G. Fleissner and A. W. Miller, On Q-sets, Proc. Amer. Math. Soc. 78 (1980), 280-284.

[003] [4] D. H. Fremlin and J. Jasiński, Gδ-covers and large thin sets of reals, Proc. London Math. Soc. (3) 53 (1986), 518-538. | Zbl 0591.54028

[004] [5] F. Galvin, J. Mycielski and R. Solovay, Strong measure zero sets, Notices Amer. Math. Soc. 26 (1979), A-280.

[005] [6] E. Grzegorek, Solution of a problem of Banach on σ-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 7-10. | Zbl 0483.28003

[006] [7] E. Grzegorek, Always of the first category sets, in: Proc. 12th Winter School on Abstract Analysis, Srní 15-29 January, 1984, Section Topology, Rend. Circ. Mat. Palermo (2) Suppl. 6 (1984), 139-147. | Zbl 0571.54025

[007] [8] K. Kuratowski, Topology I, Academic Press, New York, and PWN, Warszawa 1966.

[008] [9] A. W. Miller, Special subsets of the real line, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam 1984, 201-233.

[009] [10] J. Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), 139-147. | Zbl 0124.01301

[010] [11] J. von Neumann, Ein System algebraisch unabhängiger Zahlen, Math. Ann. 99 (1928), 134-141.

[011] [12] W. F. Pfeffer and K. Prikry, Small spaces, Proc. London Math. Soc. (3) 58 (1989), 417-438 | Zbl 0678.54026