@article{bwmeta1.element.bwnjournal-article-cmv62i2p193bwm, author = {Maohua Le}, title = {A note on primes p with $$\sigma$(p^m)=z^n$ }, journal = {Colloquium Mathematicae}, volume = {62}, year = {1991}, pages = {193-196}, zbl = {0791.11005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p193bwm} }
Le, Maohua. A note on primes p with $σ(p^m)=z^n$ . Colloquium Mathematicae, Tome 62 (1991) pp. 193-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p193bwm/
[000] [1] J. Chidambaraswawy and P. Krishnaiah, On primes p with , Proc. Amer. Math. Soc. 101 (1987), 625-628.
[001] [2] C. F. Gauss, Disquisitiones Arithmeticae, Fleischer, Leipzig 1801.
[002] [3] K. Inkeri, On the diophantine equation , Acta Arith. 21 (1972), 299-311. | Zbl 0228.10017
[003] [4] W. Ljunggren, Some theorems on indeterminate equations of the form , Norsk. Mat. Tidsskr. 25 (1943), 17-20 (in Norwegian). | Zbl 0028.00901
[004] [5] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 289-321.
[005] [6] T. Nagell, Sur l’équation indéterminée , Norsk Mat. Forenings Skr. (I) No. 3 (1921), 17 pp.
[006] [7] A. Rotkiewicz, Note on the diophantine equation , Elemente Math. 42 (1987), 76. | Zbl 0703.11016
[007] [8] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect squares, Colloq. Math. 49 (1984), 117-121. | Zbl 0551.10004
[008] [9] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect power numbers, Colloq. Math. 52 (1987), 319-323. | Zbl 0624.10004