A note on primes p with σ(pm)=zn
Le, Maohua
Colloquium Mathematicae, Tome 62 (1991), p. 193-196 / Harvested from The Polish Digital Mathematics Library
Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:210108
@article{bwmeta1.element.bwnjournal-article-cmv62i2p193bwm,
     author = {Maohua Le},
     title = {A note on primes p with $$\sigma$(p^m)=z^n$
            },
     journal = {Colloquium Mathematicae},
     volume = {62},
     year = {1991},
     pages = {193-196},
     zbl = {0791.11005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p193bwm}
}
Le, Maohua. A note on primes p with $σ(p^m)=z^n$
            . Colloquium Mathematicae, Tome 62 (1991) pp. 193-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i2p193bwm/

[000] [1] J. Chidambaraswawy and P. Krishnaiah, On primes p with σ(pα)=m2, Proc. Amer. Math. Soc. 101 (1987), 625-628.

[001] [2] C. F. Gauss, Disquisitiones Arithmeticae, Fleischer, Leipzig 1801.

[002] [3] K. Inkeri, On the diophantine equation a(xn-1)/(x-1)=ym, Acta Arith. 21 (1972), 299-311. | Zbl 0228.10017

[003] [4] W. Ljunggren, Some theorems on indeterminate equations of the form (xn-1)/(x-1)=yq, Norsk. Mat. Tidsskr. 25 (1943), 17-20 (in Norwegian). | Zbl 0028.00901

[004] [5] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 289-321.

[005] [6] T. Nagell, Sur l’équation indéterminée (xn-1)/(x-1)=y2, Norsk Mat. Forenings Skr. (I) No. 3 (1921), 17 pp.

[006] [7] A. Rotkiewicz, Note on the diophantine equation 1+x+x2+...+xn=ym, Elemente Math. 42 (1987), 76. | Zbl 0703.11016

[007] [8] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect squares, Colloq. Math. 49 (1984), 117-121. | Zbl 0551.10004

[008] [9] A. Takaku, Prime numbers such that the sums of the divisors of their powers are perfect power numbers, Colloq. Math. 52 (1987), 319-323. | Zbl 0624.10004