@article{bwmeta1.element.bwnjournal-article-cmv62i1p81bwm, author = {Jes\'us Castillo}, title = {On the structure of G-spaces}, journal = {Colloquium Mathematicae}, volume = {62}, year = {1991}, pages = {81-90}, zbl = {0804.46009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p81bwm} }
Castillo, Jesús. On the structure of G-spaces. Colloquium Mathematicae, Tome 62 (1991) pp. 81-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p81bwm/
[000] [1] S. F. Bellenot, Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis, Compositio Math. 42 (1981), 273-278. | Zbl 0432.46003
[001] [2] A. Benndorf, On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces, Studia Math. 75 (1983), 103-119. | Zbl 0541.46002
[002] [3] J. M. F. Castillo, An internal characterization of G-spaces, Portugal. Math. 44 (1987), 63-67. | Zbl 0638.46005
[003] [4] J. M. F. Castillo, La estructura de los G-espacios, Tesis Doctoral, Publ. Dept. Mat. Univ. Extremadura 16, 1986.
[004] [5] J. M. F. Castillo, On the BAP in Fréchet Schwartz spaces and their duals, Monatsh. Math. 105 (1988), 43-46. | Zbl 0639.46003
[005] [6] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, 1979. | Zbl 0403.46005
[006] [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[007] [8] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981.
[008] [9] G. Köthe, Topological Vector Spaces I, II, Springer, 1969, 1979. | Zbl 0179.17001
[009] [10] M. L. Lourenço, A projective limit representation of DFC-spaces with the approximation property, J. Math. Anal. Appl. 115 (1986), 422-433. | Zbl 0604.46001
[010] [11] E. Nelimarkka, The approximation property and locally convex spaces defined by the ideal of approximable operators, Math. Nachr. 107 (1982), 349-356. | Zbl 0536.46002
[011] [12] S. Rolewicz, On operator theory and control theory, in: Proc. Internat. Conf. on Operator Algebras, Ideals, and their Applications in Theoretical Physics, Leipzig 1977, Teubner Texte zur Math., Teubner, 1978, 114-118.
[012] [13] M. Schottenloher, Cartan-Thullen theorem for domains spread over DFM-spaces, J. Reine Angew. Math. 345 (1983), 201-220. | Zbl 0514.46029
[013] [14] T. Terzioğlu, Approximation property of co-nuclear spaces, Math. Ann. 191 (1971), 35-37. | Zbl 0198.16105