A local algebra structure for Hp of the polydisc
Merryfield, Kent ; Watson, Saleem
Colloquium Mathematicae, Tome 62 (1991), p. 73-79 / Harvested from The Polish Digital Mathematics Library
Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:210101
@article{bwmeta1.element.bwnjournal-article-cmv62i1p73bwm,
     author = {Kent Merryfield and Saleem Watson},
     title = {A local algebra structure for $H^p$ of the polydisc},
     journal = {Colloquium Mathematicae},
     volume = {62},
     year = {1991},
     pages = {73-79},
     zbl = {0766.46040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p73bwm}
}
Merryfield, Kent; Watson, Saleem. A local algebra structure for $H^p$ of the polydisc. Colloquium Mathematicae, Tome 62 (1991) pp. 73-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p73bwm/

[000] [1] P. L. Duren, Theory of Hp Spaces, Academic Press, New York 1970. | Zbl 0215.20203

[001] [2] A. P. Frazier, The dual space of H^p of the polydisc for 0 | Zbl 0237.32005

[002] [3]E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AMS Colloq. Publ. 31, Providence, R.I., 1957. | Zbl 0078.10004

[003] [4] K. Merryfield, On the area integral, Carleson measures and Hp in the polydisc, Indiana Univ. Math. J. 34 (1985), 663-685. | Zbl 0573.42014

[004] [5] P. Porcelli, Linear Spaces of Analytic Functions, Rand McNally, Chicago 1966.

[005] [6] J. Stewart and S. Watson, Topological algebras with finitely-generated bases, Math. Ann. 271 (1985), 315-318. | Zbl 0546.46044

[006] [7] N. M. Wigley, A Banach algebra structure for Hp, Canad. Math. Bull. 18 (1975), 597-603.

[007] [8] W. Żelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19 (1960), 333-356. | Zbl 0096.08303

[008] [9] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. | Zbl 0085.05601