@article{bwmeta1.element.bwnjournal-article-cmv62i1p73bwm, author = {Kent Merryfield and Saleem Watson}, title = {A local algebra structure for $H^p$ of the polydisc}, journal = {Colloquium Mathematicae}, volume = {62}, year = {1991}, pages = {73-79}, zbl = {0766.46040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p73bwm} }
Merryfield, Kent; Watson, Saleem. A local algebra structure for $H^p$ of the polydisc. Colloquium Mathematicae, Tome 62 (1991) pp. 73-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p73bwm/
[000] [1] P. L. Duren, Theory of Spaces, Academic Press, New York 1970. | Zbl 0215.20203
[001] [2] A. P. Frazier, The dual space of H^p of the polydisc for 0
| Zbl 0237.32005
[002] [3]E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AMS Colloq. Publ. 31, Providence, R.I., 1957. | Zbl 0078.10004
[003] [4] K. Merryfield, On the area integral, Carleson measures and in the polydisc, Indiana Univ. Math. J. 34 (1985), 663-685. | Zbl 0573.42014
[004] [5] P. Porcelli, Linear Spaces of Analytic Functions, Rand McNally, Chicago 1966.
[005] [6] J. Stewart and S. Watson, Topological algebras with finitely-generated bases, Math. Ann. 271 (1985), 315-318. | Zbl 0546.46044
[006] [7] N. M. Wigley, A Banach algebra structure for , Canad. Math. Bull. 18 (1975), 597-603.
[007] [8] W. Żelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19 (1960), 333-356. | Zbl 0096.08303
[008] [9] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. | Zbl 0085.05601