Are EC-spaces AE(metrizable)?
Borges, Carlos
Colloquium Mathematicae, Tome 62 (1991), p. 135-143 / Harvested from The Polish Digital Mathematics Library
Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:210088
@article{bwmeta1.element.bwnjournal-article-cmv62i1p135bwm,
     author = {Carlos Borges},
     title = {Are EC-spaces AE(metrizable)?},
     journal = {Colloquium Mathematicae},
     volume = {62},
     year = {1991},
     pages = {135-143},
     zbl = {0741.54010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p135bwm}
}
Borges, Carlos. Are EC-spaces AE(metrizable)?. Colloquium Mathematicae, Tome 62 (1991) pp. 135-143. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv62i1p135bwm/

[000] [1] R. F. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-404. | Zbl 0073.39601

[001] [2] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, Polish Scientific Publishers, Warszawa 1975.

[002] [3] C. R. Borges, A study of absolute extensor spaces, Pacific J. Math. 31 (1969), 609-617. | Zbl 0199.25701

[003] [4] C. R. Borges, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29-30. | Zbl 0276.54025

[004] [5] C. R. Borges, On stratifiable spaces, ibid. 17 (1966), 1-16.

[005] [6] C. R. Borges, Continuous selections for one-to-finite continuous multifunctions, Questions Answers Gen. Topology 3 (1985/86), 103-109.

[006] [7] C. R. Borges, Negligibility in F-spaces, Math. Japon. 32 (1987), 521-530. | Zbl 0707.46001

[007] [8] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 62 (1965), 187-193. | Zbl 0151.30301

[008] [9] J. Dugundji, Topology, Allyn and Bacon, Boston 1966.

[009] [10] E. A. Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789-806. | Zbl 0052.11502

[010] [11] E. A. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416. | Zbl 0178.25903

[011] [12] J. Milnor, Construction of universal bundles, I, Ann. of Math. (2) 63 (1956), 272-284. | Zbl 0071.17302

[012] [13] J. Nagata, Modern Dimension Theory, Heldermann Verlag, Berlin 1983.