Equivanishing sequences of mappings
Antosik, Piotr
Banach Center Publications, Tome 51 (2000), p. 89-104 / Harvested from The Polish Digital Mathematics Library

Utilizing elementary properties of convergence of numerical sequences we prove Nikodym, Banach, Orlicz-Pettis type theorems

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209080
@article{bwmeta1.element.bwnjournal-article-bcpv53z1p89bwm,
     author = {Antosik, Piotr},
     title = {Equivanishing sequences of mappings},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {89-104},
     zbl = {0974.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv53z1p89bwm}
}
Antosik, Piotr. Equivanishing sequences of mappings. Banach Center Publications, Tome 51 (2000) pp. 89-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv53z1p89bwm/

[000] [1] P. Antosik, On the Mikusiński diagonal theorem, Bull. Acad. Polon. Sci. 19 (1971), 305-310. | Zbl 0211.42703

[001] [2] P. Antosik, A diagonal theorem for nonnegative metrices and equicontinuous sequences of mappings, Bull. Acad. Polon. Sci. 24 (1976), 855-859. | Zbl 0342.40004

[002] [3] P. Antosik, A lemma on matrices and its applications, Contemporary Math. 52 (1986), 89-95.

[003] [4] P. Antosik, J. Mikusiński and R. Sikorski, Theory of Distributions. Sequential Approach, Elsevier, Amsterdam, 1973. | Zbl 0267.46028

[004] [5] P. Antosik and C. Schwartz, Matrix methods in analysis, Lecture Notes in Math. 1119, Springer, Heidelberg, 1985.

[005] [6] S. Banach, Théorie des opérations linéaires, Monografie Mat., vol. 1, Warszawa, 1932. | Zbl 0005.20901

[006] [7] J. Distel, Sequences and series in Banach spaces, Springer Verlag, 1984.

[007] [8] V. M. Doubrovsky (Dubrovskii), On some properties of complete set functions and their application to a generalization of a theorem of Lebesgue, Mat. Sb. 20 (62) (1947), 317-329.

[008] [9] L. Drewnowski, Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym Theorems, Bull. Acad. Polon. Sci. 20 (1972), 725-731. | Zbl 0243.28011

[009] [10] N. J. Kalton, Subseries convergence in topological groups and vector spaces, Israel J. Math. 10 (1971), 402-412. | Zbl 0226.22005

[010] [11] C. Kliś, An example of a non-complete normed K-space, Bull. Acad. Polon. Sci. 26 (1978), 415-420. | Zbl 0393.46017

[011] [12] G. Köthe, Topological vector spaces I, Springer Verlag, Berlin 1969. | Zbl 0179.17001

[012] [13] I. Labuda and Z. Lipecki, On subseries convergent series and m-quasi-bases in topological spaces, Manuscr. Math. 38 (1981), 87-98. | Zbl 0496.46006

[013] [14] J. Mikusiński, A theorem on vector matrices and its application in measure theory and functional analysis, Bull. Polon. Acad. Sci. 18 (1970), 193-196.

[014] [15] J. Mikusiński, Aksjomatyczna teoria zbieżności, preprint.

[015] [16] O. M. Nikodym, Sur les familles bornées de fonctions parfaitement additives d'ensembles abstraits, Monatsh. Math. Phys., 1933, 40. | Zbl 59.0270.02

[016] [17] W. Orlicz, Beiträge zur Theorie der Orthogonalentwicklungen II, Studia Math. 1 (1929), 241-255. | Zbl 55.0164.02

[017] [18] B. J. Pettis, Integration in vector spaces, Trans. Amer. Math. Soc., 44, 277-304. | Zbl 0019.41603

[018] [19] C. Schwartz, Infinite matrices and the gliding hump, World Scientific, 1996. | Zbl 0923.46003

[019] [20] H. Weber, Compactness in spaces of group valued contents, the Vitali-Hahn-Saks theorem and Nikodym boundedness theorem, Rocky Mt. J. Math. 16 (1986), 253-275. | Zbl 0604.28006

[020] [21] A. Vilensky, Modern methods in topological vector spaces, McGraw-Hill, N.Y., 1978.