An algebraic derivative associated to the operator Dδ
Almeida, V. ; Castro, N. ; Rodríguez, J.
Banach Center Publications, Tome 51 (2000), p. 71-78 / Harvested from The Polish Digital Mathematics Library

In this paper we get an algebraic derivative relative to the convolution (f*g)(t)=0tif(t-ψ)g(ψ)dψ associated to the operator Dδ, which is used, together with the corresponding operational calculus, to solve an integral-differential equation. Moreover we show a certain convolution property for the solution of that equation

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209078
@article{bwmeta1.element.bwnjournal-article-bcpv53z1p71bwm,
     author = {Almeida, V. and Castro, N. and Rodr\'\i guez, J.},
     title = {An algebraic derivative associated to the operator $D^$\delta$$
            },
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {71-78},
     zbl = {0962.44010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv53z1p71bwm}
}
Almeida, V.; Castro, N.; Rodríguez, J. An algebraic derivative associated to the operator $D^δ$
            . Banach Center Publications, Tome 51 (2000) pp. 71-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv53z1p71bwm/

[000] [1] J. A. Alamo and J. Rodríguez, Cálculo operacional de Mikusiński para el operador de Riemann-Liouville y su generalizado, Rev. Acad. Canar. Cienc. 1 (1993), 31-40.

[001] [2] W. Kierat and K. Skórnik, A remark on solutions of the Laguerre differential equation, Integral Transforms and Special Functions 1 (1993), 315-316. | Zbl 0827.44003

[002] [3] J. Mikusiński, Operational Calculus, Pergamon, Oxford, 1959.

[003] [4] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, 1984. | Zbl 0535.33001

[004] [5] Y K. Yosida, Operational Calculus. A Theory of Hyperfunctions, Springer-Verlag, New York, 1984.