In this paper we give a solution of a problem posed by the second author in her book, namely, to find symmetrical integral transforms of Fourier type, generalizing the cos-Fourier (sin-Fourier) transform and the Hankel transform, and suitable for dealing with the hyper-Bessel differential operators of order m>1 , β>0, , j=1,...,m. We obtain such integral transforms corresponding to hyper-Bessel operators of even order 2m and belonging to the class of the Mellin convolution type transforms with the Meijer G-function as kernels. Inversion formulas and some operational relations for these transforms are found.
@article{bwmeta1.element.bwnjournal-article-bcpv53z1p155bwm, author = {Luchko, Yurii and Kiryakova, Virginia}, title = {Hankel type integral transforms connected with the hyper-Bessel differential operators}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {155-165}, zbl = {0963.44004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv53z1p155bwm} }
Luchko, Yurii; Kiryakova, Virginia. Hankel type integral transforms connected with the hyper-Bessel differential operators. Banach Center Publications, Tome 51 (2000) pp. 155-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv53z1p155bwm/
[000] [1] B. L. J. Braaksma and A. Schuitman, Some classes of Watson transforms and related integral equations for generalized functions, SIAM J. Math. Anal. 7 (1976), 771-798. | Zbl 0343.44002
[001] [2] I. Dimovski, A transform approach to operational calculus for the general Bessel-type differential operator, C.R. Acad. Bulg. Sci. 27 (1974), 155-158. | Zbl 0325.44004
[002] [3] C. Fox, The - and -functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98 (1961), 395-429. | Zbl 0096.30804
[003] [4] V. S. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes in Math. Ser. 301, Longman Sci. & Technical, Harlow, 1994. | Zbl 0882.26003
[004] [5] Yu. F. Luchko and S. B. Yakubovich, Convolutions for the generalized fractional integration operators, in: Proc. Intern. Conf. 'Complex Analysis and Appl.' (Varna, 1991), Sofia, 1993, 199-211. | Zbl 0793.44004
[005] [6] O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables, Ellis Horwood, Chichester, 1983. | Zbl 0494.33001
[006] [7] N. Obrechkoff, On some integral representations of real functions on the real semi-axis, Izvestija Mat. Institut (BAS-Sofia) 3, No 1 (1958), 3-28 (in Bulgarian); Engl. transl. in: East J. on Approximations 3, No 1 (1997), 89-110.
[007] [8] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series. Vol. 3: More Special Functions, Gordon and Breach, New York - London - Paris - Montreux - Tokyo, 1989. | Zbl 0967.00503
[008] [9] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, London - New York, 1993.
[009] [10] E. C. Titchmarsh, Introduction to Theory of Fourier Integrals, Oxford Univ. Press, Oxford, 1937. | Zbl 0017.40404
[010] [11] K. T. Vu, Integral Transforms and Their Composition Structure, Dr.Sc. thesis, Minsk, 1987 (in Russian).
[011] [12] K. T. Vu, O. I. Marichev and S. B. Yakubovich, Composition structure of integral transformations, J. Soviet Math. 33 (1986), 166-169. | Zbl 0604.44003
[012] [13] S. B. Yakubovich and Yu. F. Luchko, Hypergeometric Approach to Integral Transforms and Convolutions, Mathematics and Its Applications 287, Kluwer Acad. Publ., Dordrecht - Boston - London, 1994. | Zbl 0803.44001