@article{bwmeta1.element.bwnjournal-article-bcpv52z1p29bwm, author = {Cannone, Marco}, title = {Nombres de Reynolds, stabilit\'e et Navier-Stokes}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {29-59}, zbl = {0962.35135}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p29bwm} }
Cannone, Marco. Nombres de Reynolds, stabilité et Navier-Stokes. Banach Center Publications, Tome 51 (2000) pp. 29-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p29bwm/
[000] [1] C. Bardos, F. Golse and D. Levermore, Fluid dynamical limits of kinetic equations, I: Formal derivation, J. Stat. Physics 63 (1991), 323-344.
[001] [2] C. Bardos, F. Golse and D. Levermore, Fluid dynamical limits of kinetic equations, II: Convergence proofs, Comm. Pure and Appl. Mathematics 46 (1993), 667-753. | Zbl 0817.76002
[002] [3] C. Bardos, F. Golse and D. Levermore, Acoustic and Stokes limits for the Boltzmann equation, C.R.A.S.P. 327 (1998), 323-328. | Zbl 0918.35109
[003] [4] C. Bardos, From molecules to turbulence. An overview of multiscale analysis in fluid dynamics, in: Advanced topics in theoretical fluid mechanics, J. Málec, J. Nečas and M. Rokyta (ed.), Pitman Research Notes in Mathematics Series 392, Longman, 1998.
[004] [5] O. A. Barraza, Self-similar solutions in weak spaces of the Navier-Stokes equations, Rev. Mat. Iberoamericana 12 (1996), 411-439. | Zbl 0860.35092
[005] [6] J. Bergh and J. Löfstrom, Interpolation spaces, An Introduction, Springer-Verlag,1976. | Zbl 0344.46071
[006] [7] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Mathematica 114 (1995), 181-205. | Zbl 0829.35044
[007] [8] J. M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires, Ann. Sci. Ec. Norm. Sup. 4ème Série 14 (1981), 209-246. | Zbl 0495.35024
[008] [9] H. Brézis, Remarks on the preceding paper by M. Ben-Artzi, Arch. Rat. Mech. Anal. 128 (1994), 359-360.
[009] [10] H. Brézis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277-304. | Zbl 0868.35058
[010] [11] C. P. Calderón, Existence of weak solutions for the Navier-Stokes equations with initial data in , Trans. Amer. Math. Soc. 318 (1990), 179-200. | Zbl 0707.35118
[011] [12] C. P. Calderón, Addendum to the paper: ’Existence of weak solutions for the Navier-Stokes equations with initial data in ’, Trans. Amer. Math. Soc. 318 (1990), 201-207. | Zbl 0707.35119
[012] [13] C. P. Calderón, Initial values of solutions of the Navier-Stokes equations, Proc. Amer. Math. Soc. 117 (1993), 761-766. | Zbl 0777.35054
[013] [14] J. R. Cannon and G. H. Knightly, A note on the Cauchy problem for the Navier-Stokes equations, SIAM J. Appl. Math. 18 (1970), 641-644. | Zbl 0202.37203
[014] [15] M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur, 1995.
[015] [16] M. Cannone, A generalisation of a theorem by Kato on Navier-Stokes equations, Revista Matematica Iberoamericana 13 (1997), 515-541. | Zbl 0897.35061
[016] [17] M. Cannone and Y. Meyer, Littlewood-Paley decomposition and the Navier-Stokes equations, Meth. and Appl. of Anal. 2 (1995), 307-319. | Zbl 0842.35074
[017] [18] M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, Exposé n. VIII, Séminaire X-EDP, Ecole Polytechnique (Janvier 1994).
[018] [19] M. Cannone and F. Planchon, Self-similar solutions of the Navier-Stokes equations in , Comm. Part. Diff. Eq. 21 (1996), 179-193. | Zbl 0842.35075
[019] [20] M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions of the incompressible Navier-Stokes equations in , Revista Matematica Iberoamericana 16 (2000), 1-16. | Zbl 0965.35121
[020] [21] M. Cannone and F. Planchon, On the non stationary Navier-Stokes equations with an external force, Adv. in Diff. Eq. 4 (1999), 697-730. | Zbl 0952.35089
[021] [22] M. Cannone, F. Planchon and M. Schonbek, Navier-Stokes equations in the half space, Comm. P.D.E. (à paraître, 1999).
[022] [23] M. Cannone and F. Planchon, Fonctions de Lyapunof pour les équations de Navier-Stokes, à paraître dans séminaire X-EDP, Ecole Polytechnique (1999-2000).
[023] [24] A. L. Cauchy, Sur les équations qui expriment les conditions d'équilibre ou les lois du mouvement des fluides, dans 'Exercices de Mathématiques' Œ uvres complètes, II Série, Tome VIII (1890), Gauthier-Villars, Paris, (1828), 158-179.
[024] [25] T. Cazenave and F. Weissler, Asymptotically self-similar global solutions of the non linear Schrödinger and heat equations, Math. Zeit. 228 (1998), 83-120. | Zbl 0916.35109
[025] [26] C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences 104, Springer-Verlag, 1994. | Zbl 0813.76001
[026] [27] C. Cercignani, Ludwig Boltzmann: the man who trusted atoms, Oxford University Press, 1998. | Zbl 0917.01028
[027] [28] J. Y. Chemin, Remarques sur l'existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992), 20-28.
[028] [29] J. Y. Chemin, About Navier-Stokes system, Publ. Lab. Anal. Num. (Univ. Paris 6) R 96023, (1996) 1-43.
[029] [30] J. Y. Chemin, Sur l'unicité dans le système de Navier-Stokes tridimensionnel, Exposé n. XXIV, Séminaire X-EDP, Ecole Polytechnique, (1996-1997).
[030] [31] J. Y. Chemin, Sur l'unicité dans le système de Navier-Stokes tridimensionnel, J. Anal. Math. 77 (1999), 27-50.
[031] [32] P. Constantin and C. Foias, Navier-Stokes equations, Chicago Lectures in Mathematics, University of Chicago Press, 1988.
[032] [33] J. S. Darrozes et C. François, Mécanique des Fluides Incompressibles, Springer Verlag, Berlin, 1982. | Zbl 0487.76002
[033] [34] N. Depauw, Solutions peu régulières des équations d'Euler et Navier-Stokes incompressibles sur un domaine à bord, Thèse de Doctorat de l'Université de Paris Nord, 1998.
[034] [35] P. G. Drazin and W. H. Reid, Hydrodynamic stability, Cambridge University Press, 1981.
[035] [36] R. Dugas, Histoire de la mécanique, Paris, Editions Dunod, Neuchatel Editions du Griffon, 1950. | Zbl 0041.00102
[036] [37] E. B. Fabes, B. F. Jones and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in , Arch. Rat. Mech. Anal. 45 (1972), 222-240. | Zbl 0254.35097
[037] [38] E. B. Fabes, J. E. Lewis and N. M. Rivière, Boundary value problems for the Navier-Stokes equations, Am. Jour. of Math. 99 (1977), 601-625. | Zbl 0386.35037
[038] [39] P. Federbush, Navier and Stokes meet the wavelet, Comm. Math. Phys. 155 (1993), 219-248. | Zbl 0795.35080
[039] [40] C. Foias and R. Temam, Self-similar universal homogeneous statistical solutions of the Navier-Stokes equations, Comm. Math. Phys. 90 (1983) 187-20.
[040] [41] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, Monograph in the CBM-AMS 79, 1991. | Zbl 0757.42006
[041] [42] G. Furioli, Applications de l'analyse harmonique réelle à l'étude des équations de Navier-Stokes et de Schrödinger non linéaires, Thèse de Doctorat de l'Université d'Orsay, 1999.
[042] [43] G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Sur l’unicité dans des solutions mild des équations de Navier-Stokes, C. R. Acad. Sci. Paris 325 (1997), 1253-1256. | Zbl 0894.35083
[043] [44] G. Furioli, P.-G. Lemarié-Rieusset and E. Terraneo, Unicité dans et d’autres espaces fonctionnels limites pour Navier-Stokes, Rev. Mat. Iberoamericana (à paraître, 2000).
[044] [45] H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rat. Mech. Anal. 16 (1964), 269-315. | Zbl 0126.42301
[045] [46] A. Georgescu, Hydrodynamic stability theory, Martinus Nijhoff Publishers, Kluwer 1985. | Zbl 0608.76035
[046] [47] Y. Giga, Weak and strong solutions of the Navier-Stokes initial value problem, Publ. RIMS, Kyoto Univ. 19 (1983), 887-910. | Zbl 0547.35101
[047] [48] Y. Giga, Domains of fractional powers of the Stokes operator in spaces, Arch. Mech. Rat. Anal. 89 (1985), 251-265. | Zbl 0584.76037
[048] [49] Y. Giga, Solutions for semi linear parabolic equations in and regularity of weak solutions of the Navier-Stokes system J. Diff. Equat. 61 (1986), 186-212.
[049] [50] Y. Giga, Regularity criteria for weak solutions of the Navier-Stokes system, Proceedings of Symposia in Pure Mathematics 45 (1986), 449-453.
[050] [51] Y. Giga, Review of the paper by H. Brezis, 'Remarks on the preceding paper by M. Ben-Artzi', Math. Reviews 96h:35149, (August 1996) [see, for the revised form, at the address http://klymene.mpim-bonn.mpg.de:80/msnprhtml/review_search.html].
[051] [52] Y. Giga, K. Inui and S. Matsui, On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data, Quaderni di Matematica (à paraître, 2000). | Zbl 0961.35110
[052] [53] Y. Giga and T. Miyakawa, Solutions in of the Navier-Stokes initial value problem, Arch. Mech. Rat. Anal. 89 (1985), 267-281. | Zbl 0587.35078
[053] [54] Y. Giga and T. Miyakawa, Navier-Stokes flows in with measures as initial vorticity and the Morrey spaces, Comm. PDE 14 (1989), 577-618. | Zbl 0681.35072
[054] [55] G. Grubb, Initial value problems for the Navier-Stokes equations with Neumann conditions, in: 'The Navier-Stokes equations II', J. G. Heywood, K. Masuda, R. Rautmann and S. A. Solonnikov (ed.), Proc. Conf. Oberwolfach 1991, Lecture Notes in Mathematics 1530, Springer, Berlin, 1992, 262-283. | Zbl 0781.35051
[055] [56] A. Haraux and F. Weissler, Non-uniqueness for a semi-linear initial value problem, Indiana Univ. Math. J. 31 (1982), 167-189. | Zbl 0465.35049
[056] [57] J. G. Heywood and R Rannacher, An analysis of stability concepts for the Navier-Stokes equations, J. Reine Angew. Math. 372 (1986), 1-33. | Zbl 0598.35091
[057] [58] J. E. Johnsen, The Stationary Navier-Stokes Equations in and Related Spaces, Ph. D. Thesis, Mathematics Institute University of Copenhagen, Denmark, 1993.
[058] [59] D. D. Joseph, Stability of fluid motions, (2 vols) Springer Tracts in Natural Philosophy, Berlin, Springer Verlag, 1976. | Zbl 0345.76023
[059] [60] R. Kajikaya and T. Miyakawa, On -decay of weak solutions of the Navier-Stokes equations in , Math. Z. 192 (1986), 135-148.
[060] [61] T. Kato, Nonlinear evolution equations in Banach spaces, Proceedings of the Symposium on Applied Mathematics, AMS 17 (1965), 50-67.
[061] [62] T. Kato, Nonstationary flows of viscous and ideal fluids in , J. Functional Analysis 9 (1972), 296-305. | Zbl 0229.76018
[062] [63] T. Kato, Quasi-linear equations of evolution with application to partial differential equations, in: Lecture Notes in Mathematics 448, Springer, 1975, 25-70.
[063] [64] T. Kato, Strong solutions of the Navier-Stokes equations in with applications to weak solutions, Math. Zeit. 187 (1984), 471-480. | Zbl 0545.35073
[064] [65] T. Kato, Liapunov functions and monotonicity in the Navier-Stokes equations, Lecture Notes in Mathematics 1450, 1990, 53-63.
[065] [66] T. Kato, Strong solutions of the Navier-Stokes equations in Morrey spaces, Bol. Soc. Brasil. Math. (N.S.) 22 (1992), 127-155. | Zbl 0781.35052
[066] [67] T. Kato, Well-posedness nitsuite, Sugaku (en japonais) 48 (1996), 298-300.
[067] [68] T. Kato and H. Fujita, On the non-stationary Navier-Stokes system, Rend. Sem. Mat. Univ. Padova 32 (1962), 243-260. | Zbl 0114.05002
[068] [69] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math. 41 (1988), 891-907. | Zbl 0671.35066
[069] [70] T. Kato and G. Ponce, The Navier-Stokes equations with weak initial data, Int. Math. Res. Not. 10 (1994), 435-444. | Zbl 0837.35116
[070] [71] T. Kawanago, Stability estimate of strong solutions for the Navier-Stokes system and its application, Electron. J. Differential Equations (electronic) (see: http://ejde.math.swt. edu/Volumes/1998/15-Kawanago/abstr.html) 15 (1998), 1-23.
[071] [72] A. A. Kiselev and O. A. Ladyzhenskaya, On the existence and uniqueness of solutions of the initial value problem for viscous incompressible fluids, Izvestia Akad. Nauk SSSR, 21 (1957), 655-680 (en russe).
[072] [73] G. H. Knightly, A Cauchy problem for the Navier-Stokes equations in , SIAM J. Math. Anal. 3 (1972), 506-511. | Zbl 0246.76021
[073] [74] G. H. Knightly, On a class of global solutions of the Navier-Stokes equations, Arch. Mech. Rat. Anal. 21 (1966), 211-245. | Zbl 0148.21603
[074] [75] T. Kobayoshi and T. Muramatu, Abstract Besov spaces approach to the non-stationary Navier-Stokes equations, Math. Meth. Appl. Sc. 15 (1992), 599-620. | Zbl 0771.35046
[075] [76] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. P.D.E. 19 (1994), 959-1014. | Zbl 0803.35068
[076] [77] H. Kozono and M. Yamazaki, The stability of small stationary solutions in Morrey spaces of the Navier-Stokes equation, Ind. Univ. Math. Journ. 44 (1995), 1307-1336. | Zbl 0853.35089
[077] [78] L. D. Landau, Sur le problème de la turbulence, Dokl. Akad. Nauk. SSSR 44 (1944), 339-342 (en russe).
[078] [79] L. D. Landau et E. M. Lifchitz, Mécanique des fluides, MIR, Moscou, 2ème édition, 1989.
[079] [80] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, 2nd ed., 1969. | Zbl 0184.52603
[080] [81] Y. Le Jan and A. S. Sznitman, Cascades aléatoires et équations de Navier-Stokes, C. R. Acad. Sci. Paris 324 (1997), 823-826. | Zbl 0876.35083
[081] [82] Y. Le Jan and A.S. Sznitman, Stochastic cascades and 3-dimensional Navier-Stokes equations, Prob. Theory Related Fields 109 (1997) 343-366. | Zbl 0888.60072
[082] [83] P. G. Lemarié-Rieusset, Some remarks on the Navier-Stokes equations in , Jour. Math. Phys. 39 (1998), 4108-4117.
[083] [84] J. Leray, Etudes de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl. 12 (1933), 1-82. | Zbl 0006.16702
[084] [85] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248.
[085] [86] J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois, J. Math. Pures Appl. 13 (1934), 331-418. | Zbl 60.0727.01
[086] [87] J. Leray, Aspects de la mécanique théorique des fluides, La Vie des Sciences, Comptes Rendus, Série générale, II (1994), 287-290. | Zbl 0815.76002
[087] [88] J. Leray, Selected Papers, Œ uvres Scientifiques, Springer et Société Mathématique de France, Volume II, Fluid Dynamics and Real Partial Differential Equations. Introduction by Peter D. Lax, 1998.
[088] [89] J. E. Lewis, The initial-boundary value problem for the Navier-Stokes equations with data in , Indiana Univ. Math. Jour. 22 (1973), 739-761. | Zbl 0252.35054
[089] [90] C. C. Lin, The theory of hydrodynamic stability, Corrected reprinting, Cambridge University Press, New York, 1966.
[090] [91] J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969. | Zbl 0189.40603
[091] [92] P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol 1. Incompressible models, Oxford University Press, 1996. | Zbl 0866.76002
[092] [93] P. L. Lions et N. Masmoudi, Unicité des solutions faibles de Navier-Stokes dans , C.R.A.S.P. 327 (1998), 491-496. | Zbl 0990.35114
[093] [94] A. M. Lyapunov, Stability of Motion, (traduit du russe), Academic Press, 1966.
[094] [95] J. Málek, J. Nečas, M. Pokorný and M. E. Schonbek, On possible singular solutions to the Navier-Stokes equations, Math. Nachr. (1998). | Zbl 0922.35126
[095] [96] Y. Meyer, Wavelets, paraproducts and Navier-Stokes equations, Current Developments in Mathematics 1996, International Press, 105-212 %Cambridge, MA 02238-2872 (à paraître, 1999). | Zbl 0926.35115
[096] [97] Y. Meyer, New estimates for Navier-Stokes equations (manuscrit), Colloque en l'honneur de J.-L. Lions à l'occasion de son 70e anniversaire, Paris 26-27 mai 1998, Auditorium du CNRS, 3 rue Michel-Ange, Paris XVIe, 1998.
[097] [98] T. Miyakawa, On the initial value problem for the Navier-Stokes equations in spaces, Hiroshima Math. J. 11 (1981), 9-20. | Zbl 0457.35073
[098] [99] T. Miyakawa, On -Stability of Stationary Navier-Stokes Flows in , J. Math. Sci. Univ. Tokyo 4 (1997), 67-119.
[099] [100] C. L. M. H. Navier, Mémoire sur les lois du mouvement des fluides, Mém. Acad. Sci. Inst. France 6 (1822), 389-440.
[100] [101] J. Nečas, M. Rοcirc užička and V. Šverák, On Leray self-similar solutions of the Navier-Stokes equations, Acta Math. 176 (1996), 283-294. | Zbl 0884.35115
[101] [102] H. Okamoto, Exact solutions of the Navier-Stokes equations via Leray's scheme, Japan J. Indust. Appl. Math.14 (1997), 169-197. | Zbl 1306.76016
[102] [103] W. Mc F. Orr, The stability or instability of the steady motion of a liquid. Part II, A viscous fluid, Proc. Roy. Irish Acad. A 27 (1907), 69-138.
[103] [104] F. Oru, Rôle des oscillations dans quelques problèmes d'analyse non-linéaire, Thèse de Doctorat de l'Ecole Normale Supérieure de Cachan, 1998.
[104] [105] M. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellschaft, Leipzig, 1927. | Zbl 53.0773.02
[105] [106] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Series, 1976. | Zbl 0356.46038
[106] [107] F. Planchon, Global strong solutions in Sobolev or Lebesgue spaces for the incompressible Navier-Stokes equations in , Ann. Inst. H. Poinc. 13 (1996), 319-336. | Zbl 0865.35101
[107] [108] F. Planchon, Convergence de solutions des équations de Navier-Stokes vers des solutions auto-similaires, Exposé n. III, Séminaire X-EDP, Ecole Polytechnique, 1996.
[108] [109] F. Planchon, Asymptotic behavior of global solutions to the Navier-Stokes equations in , Revista Matematica Iberoamericana 14 (1998), 71-93. | Zbl 0910.35096
[109] [110] F. Planchon, Solutions Globales et Comportement Asymptotique pour les Equations de Navier-Stokes, PhD Thesis, Ecole Polytechnique, France, 1996.
[110] [111] S. D. Poisson, Mémoire sur les équations générales de l'équilibre et du mouvement des corps solides élastiques et des fluides, Jour. de l'Ecole Polytechnique 13 (1831), 1-74.
[111] [112] M. Reed and B. Simon, Fourier Analysis, vol 2, Academic Press, 1975.
[112] [113] O. Reynolds, An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinouos and the law of resistence in parallel chanels, Phil. Trans. Roy. Soc. London 174 (1883), 935-982. | Zbl 16.0845.02
[113] [114] F. Ribaud, Analyse de Littlewood-Paley pour la Résolution d'Equations Paraboliques Semi-linéaires, PhD Thesis, Université d'Orsay, 1996.
[114] [115] F. Ribaud, Problème de Cauchy pour les équations paraboliques semi-linéaires avec données dans , C. R. Acad. Sci. Paris 322 (1996), 25-30.
[115] [116] F. Ribaud, Semilinear parabolic equations with distributions as initial data, Discrete Contin. Dynam. Systems 3 (1997), 305-316. | Zbl 0949.35065
[116] [117] G. Rosen, Navier-Stokes initial value problem for boundary-free incompressible fluid flow, Phys. Fluid 13 (1970), 2891-2903. | Zbl 0213.53503
[117] [118] M. E. Schonbek, -decay for weak solutions of the Navier-Stokes equations, Arch. Rat. Mech. 88 (1985), 209-222.
[118] [119] J. Serrin, On the stability of viscous fluid motions, Arch. Rat. Mech. Anal. 3 (1959), 1-13. | Zbl 0086.20001
[119] [120] J. Serrin, Mathematical principles of classical fluid mechanics, Encyclopedia of Physics, Edited by S. Flügge, vol VIII/1, Fluid Dynamics I, co-editor C. Truesdell, Springer-Verlag, 1959.
[120] [121] M. Shinbrot, Lectures on Fluid Mechanics, Gordon and Breach, New York, 1973.
[121] [122] M. E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Progress in mathematics 100, Birkhäuser, 1991.
[122] [123] M. E. Taylor, Analysis on Morrey spaces and applications to the Navier-Stokes and other evolution equations, Comm. PDE 17 (1992), 1407-1456. | Zbl 0771.35047
[123] [124] M. E. Taylor, Partial differential equations. I, II, Applied Mathematical Sciences 115 and 116, Springer Verlag, 1996.
[124] [125] R. Temam, Navier-Stokes equations. Theory and numerical analysis. With an appendix by F. Thomasset, Third Edition, Studies in Mathematics and its Applications, North-Holland, 1984. | Zbl 0568.35002
[125] [126] R. Temam, Some developments on Navier-Stokes equations in the second half of the 20th century, in: Développement des Mathématiques au cours de la seconde moité du XXème siècle, J.P. Managing (ed.), 1998. | Zbl 0970.35103
[126] [127] E. Terraneo, Applications de certains espaces fonctionnels de l'analyse harmonique réelle aux équations de Navier-Stokes et de la chaleur non-linéaires, Thèse de Doctorat de l'% Université d'Evry Val d'Essonne, 1999.
[127] [128] H. Triebel, Theory of Function Spaces, Monograph in mathematics 78, Birkhäuser, 1983.
[128] [129] H. Triebel, Theory of Function Spaces II, Monograph in mathematics 84, Birkhäuser, 1992. | Zbl 0763.46025
[129] [130] C. Truesdell, The mechanical foundations of elasticity and fluid dynamics, J. Rat. Mech. Anal 1 (1952), 125-291. | Zbl 0046.17306
[130] [131] T. P. Tsai, On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Rat. Mech. Anal. 143 (1998), 29-51. | Zbl 0916.35084
[131] [132] H. Villat, Leçons sur les fluides visqueux, recueillies et rédigées par J. Kravtchenko, Gauthier-Villars, Paris, 1943.
[132] [133] M. Vishik, Incompressible flows of an ideal fluid with vorticity in bordeline spaces of Besov type, preprint (1998).
[133] [134] K. A. Voss, Self-similar Solutions of the Navier-Stokes Equations, Ph. D. Thesis Yale University, 1996.
[134] [135] W. von Wahl, The equations of Navier-Stokes and abstract parabolic equations. Aspects of Mathematics, E8. Friedr. Vieweg and Sohn, Braunschweig, 1985.
[135] [136] F. B. Weissler, Local existence and non existence for semilinear parabolic equation in , Indiana Univ. Math. Journ. 29 (1980), 79-102. | Zbl 0443.35034
[136] [137] F. B. Weissler, The Navier-Stokes initial value problem in , Arch. Rat. Mech. Anal. 74 (1981) 219-230. | Zbl 0454.35072
[137] [138] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on , J. London Math. Soc. 35 (1987), 303-313. | Zbl 0652.35095