This work is concerned with the proof of decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation . The coefficient consists of an increasing smooth function and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).
@article{bwmeta1.element.bwnjournal-article-bcpv52z1p189bwm, author = {Reissig, Michael and Yagdjian, Karen}, title = {Klein-Gordon type decay rates for wave equations with time-dependent coefficients}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {189-212}, zbl = {0983.35078}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p189bwm} }
Reissig, Michael; Yagdjian, Karen. Klein-Gordon type decay rates for wave equations with time-dependent coefficients. Banach Center Publications, Tome 51 (2000) pp. 189-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p189bwm/
[000] [1] P. Brenner, On estimates for the wave-equation, Math. Zeitschrift 145 (1975), 251-254. | Zbl 0321.35052
[001] [2] P. Brenner, On the existence of global smooth solutions of certain semi-linear hyperbolic equations, Math. Zeitschrift 167 (1979), 99-135. | Zbl 0388.35048
[002] [3] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators. An Introduction, London Mathematical Society Lecture Note Series, Vol.196, University Press, Cambridge, 1994. | Zbl 0804.35001
[003] [4] F. Hirosawa, Energy decay for degenerate hyperbolic equations of Klein-Gorden type with dissipative term, manuscript.
[004] [5] L. Hörmander, Remarks on the Klein-Gorden equation, Journées Equations aux Dérivées Partielles, Saint Jean de Monts, 1987.
[005] [6] L. Hörmander, Translation invariant operators in spaces, Acta Math. 104 (1960), 93-140. | Zbl 0093.11402
[006] [7] S. Klainerman, Global existence for nonlinear wave equations, Comm. on Pure and Appl. Math. 33 (1980), 43-101. | Zbl 0405.35056
[007] [8] Li Ta-tsien, Global classical solutions for quasilinear hyperbolic systems, John Wiley & Sons, 1994.
[008] [9] W. Littman, Fourier transformations of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. | Zbl 0143.34701
[009] [10] H. Pecher, -Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Zeitschrift 150 (1976), 159-183.
[010] [11] R. Racke, Lectures on Nonlinear Evolution Equations, Aspects of Mathematics, Vieweg, Braunschweig/Wiesbaden, 1992. | Zbl 0811.35002
[011] [12] M. Reissig and K. Yagdjian, An example for the influence of oscillations on decay estimates, to appear. | Zbl 0947.35025
[012] [13] M. Reissig and K. Yagdjian, One application of Floquet’s theory to estimates, Math. Meth. Appl. Sci. 22 (1999), 937-951. | Zbl 0949.35024
[013] [14] M. Reissig and K. Yagdjian, estimates for the solutions of strictly hyperbolic equations of second order with time dependent coefficients, accepted for publication in Mathematische Nachrichten.
[014] [15] M. Reissig and K. Yagdjian, estimates for the solutions of hyperbolic equations of second order with time dependent coefficients - Oscillations via growth -, Preprint 98-5, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg.
[015] [16] R. Strichartz, A priori estimates for the wave-equation and some applications, J. Funct. Anal. 5 (1970), 218-235. | Zbl 0189.40701
[016] [17] W. v. Wahl, -decay rates for homogeneous wave-equations, Math. Zeitschrift 120 (1971), 93-106. | Zbl 0212.44201
[017] [18] K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple characteristics. Micro-local approach, Math. Topics, Vol. 12, Akademie Verlag, Berlin, 1997. | Zbl 0887.35002