Klein-Gordon type decay rates for wave equations with time-dependent coefficients
Reissig, Michael ; Yagdjian, Karen
Banach Center Publications, Tome 51 (2000), p. 189-212 / Harvested from The Polish Digital Mathematics Library

This work is concerned with the proof of Lp-Lq decay estimates for solutions of the Cauchy problem for the Klein-Gordon type equation utt-λ2(t)b2(t)(Δu-m2u)=0. The coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded function b which are uniformly separated from zero. Moreover, m2 is a positive constant. We study under which assumptions for λ and b one can expect as an essential part of the decay rate the classical Klein-Gordon decay rate n/2(1/p-1/q).

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209057
@article{bwmeta1.element.bwnjournal-article-bcpv52z1p189bwm,
     author = {Reissig, Michael and Yagdjian, Karen},
     title = {Klein-Gordon type decay rates for wave equations with time-dependent coefficients},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {189-212},
     zbl = {0983.35078},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p189bwm}
}
Reissig, Michael; Yagdjian, Karen. Klein-Gordon type decay rates for wave equations with time-dependent coefficients. Banach Center Publications, Tome 51 (2000) pp. 189-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p189bwm/

[000] [1] P. Brenner, On Lp-Lq estimates for the wave-equation, Math. Zeitschrift 145 (1975), 251-254. | Zbl 0321.35052

[001] [2] P. Brenner, On the existence of global smooth solutions of certain semi-linear hyperbolic equations, Math. Zeitschrift 167 (1979), 99-135. | Zbl 0388.35048

[002] [3] A. Grigis and J. Sjöstrand, Microlocal Analysis for Differential Operators. An Introduction, London Mathematical Society Lecture Note Series, Vol.196, University Press, Cambridge, 1994. | Zbl 0804.35001

[003] [4] F. Hirosawa, Energy decay for degenerate hyperbolic equations of Klein-Gorden type with dissipative term, manuscript.

[004] [5] L. Hörmander, Remarks on the Klein-Gorden equation, Journées Equations aux Dérivées Partielles, Saint Jean de Monts, 1987.

[005] [6] L. Hörmander, Translation invariant operators in Lp spaces, Acta Math. 104 (1960), 93-140. | Zbl 0093.11402

[006] [7] S. Klainerman, Global existence for nonlinear wave equations, Comm. on Pure and Appl. Math. 33 (1980), 43-101. | Zbl 0405.35056

[007] [8] Li Ta-tsien, Global classical solutions for quasilinear hyperbolic systems, John Wiley & Sons, 1994.

[008] [9] W. Littman, Fourier transformations of surface carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770. | Zbl 0143.34701

[009] [10] H. Pecher, Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Zeitschrift 150 (1976), 159-183.

[010] [11] R. Racke, Lectures on Nonlinear Evolution Equations, Aspects of Mathematics, Vieweg, Braunschweig/Wiesbaden, 1992. | Zbl 0811.35002

[011] [12] M. Reissig and K. Yagdjian, An example for the influence of oscillations on Lp-Lq decay estimates, to appear. | Zbl 0947.35025

[012] [13] M. Reissig and K. Yagdjian, One application of Floquet’s theory to Lp-Lq estimates, Math. Meth. Appl. Sci. 22 (1999), 937-951. | Zbl 0949.35024

[013] [14] M. Reissig and K. Yagdjian, Lp-Lq estimates for the solutions of strictly hyperbolic equations of second order with time dependent coefficients, accepted for publication in Mathematische Nachrichten.

[014] [15] M. Reissig and K. Yagdjian, Lp-Lq estimates for the solutions of hyperbolic equations of second order with time dependent coefficients - Oscillations via growth -, Preprint 98-5, Fakultät für Mathematik und Informatik, TU Bergakademie Freiberg.

[015] [16] R. Strichartz, A priori estimates for the wave-equation and some applications, J. Funct. Anal. 5 (1970), 218-235. | Zbl 0189.40701

[016] [17] W. v. Wahl, Lp-decay rates for homogeneous wave-equations, Math. Zeitschrift 120 (1971), 93-106. | Zbl 0212.44201

[017] [18] K. Yagdjian, The Cauchy problem for hyperbolic operators. Multiple characteristics. Micro-local approach, Math. Topics, Vol. 12, Akademie Verlag, Berlin, 1997. | Zbl 0887.35002