@article{bwmeta1.element.bwnjournal-article-bcpv52z1p181bwm, author = {Ozawa, Tohru and Tsutaya, Kimitoshi and Tsutsumi, Yoshio}, title = {On the coupled system of nonlinear wave equations with different propagation speeds}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {181-188}, zbl = {0984.35111}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p181bwm} }
Ozawa, Tohru; Tsutaya, Kimitoshi; Tsutsumi, Yoshio. On the coupled system of nonlinear wave equations with different propagation speeds. Banach Center Publications, Tome 51 (2000) pp. 181-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p181bwm/
[000] [1] D. Bekiranov, T. Ogawa and G. Ponce, Weak solvability and well posedness of the coupled Schrödinger Korteweg-de Vries equations in the capillary-gravity interaction waves, Proc. Amer. Math. Soc. 125 (1997) 2907-2919. | Zbl 0884.35138
[001] [2] D. Bekiranov, T. Ogawa and G. Ponce, Interaction equations for short and long dispersive waves, J. Funct. Anal. 158 (1998) 357-388. | Zbl 0909.35123
[002] [3] J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-New York-Heidelberg, 1976. | Zbl 0344.46071
[003] [4] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. I Schrödinger equations, Geom. Funct. Anal. 3 (1993) 107-156. | Zbl 0787.35097
[004] [5] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear dispersive equations. II The KdV equation, Geom. Funct. Anal. 3 (1993) 209-262. | Zbl 0787.35098
[005] [6] J. Bourgain and J. Colliander, On well-posedness of the Zakharov system, Int. Math. Res. Not. 11 (1996) 515-546. | Zbl 0909.35125
[006] [7] R. O. Dendy, Plasma Dynamics, Oxford University Press, Oxford, 1990.
[007] [8] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain), Séminaire Bourbaki no. 796, Astérisque 237 (1996) 163-187.
[008] [9] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995) 50-68. | Zbl 0849.35064
[009] [10] J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, J. Funct. Anal. 151 (1997) 384-436. | Zbl 0894.35108
[010] [11] C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993) 1-21. | Zbl 0787.35090
[011] [12] C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996) 573-603. | Zbl 0848.35114
[012] [13] C. Kenig, G. Ponce and L. Vega, Quadratic forms for the 1-D semilinear Schrödinger equation, Trans. Amer. Math. Soc. 348 (1996) 3323-3353. | Zbl 0862.35111
[013] [14] S. Klainerman and M. Machedon, Space time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993) 1221-1268. | Zbl 0803.35095
[014] [15] S. Klainerman and M. Machedon, Smoothing estimates for null forms and applications, Duke Math. J. 81 (1995) 96-103. | Zbl 0909.35094
[015] [16] S. Klainerman and M. Machedon, Estimates for null forms and the space , Int. Math. Res. Not. 17 (1996) 853-365. | Zbl 0909.35095
[016] [17] S. Klainerman and S. Selberg, Remark on the optimal regularity for equations of wave map in 3D, Comm. Part. Diff. Eqs. 22 (1997) 901-918. | Zbl 0884.35102
[017] [18] H. Lindblad, A sharp counterexample to the local existence of low regularity solutions to nonlinear wave equations, Duke Math. J. 72 (1993) 503-539. | Zbl 0797.35123
[018] [19] H. Lindblad, Counterexamples to local existence for semi-linear wave equations, Amer. J. Math. 118 (1996) 1-16. | Zbl 0855.35080
[019] [20] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995) 357-426. | Zbl 0846.35085
[020] [21] T. Ozawa, K. Tsutaya and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Annalen 313 (1999) 127-140. | Zbl 0935.35094
[021] [22] H. Pecher, Nonlinear samll data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984) 261-270. | Zbl 0538.35063
[022] [23] G. Ponce and T. Sideris, Local regularity of nonlinear wave equations in three space dimensions, Comm. Part. Diff. Eqs. 18 (1993) 169-177. | Zbl 0803.35096
[023] [24] R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977) 705-714. | Zbl 0372.35001
[024] [25] K. Tsugawa, Well-posedness in the energy space for the Cauchy problem of the coupled system of complex scalar field and Maxwell equations, to appear in Fukcialaj Ekvacioj. | Zbl 1142.35612
[025] [26] K. Tsutaya, Local regularity of non-resonant nonlinear wave equations, Diff. Integr. Eqns. 11 (1998) 279-292. | Zbl 1004.35093
[026] [27] V. E. Zakharov, Collapse of Langmuir waves, Sov. Phys. JETP 35 (1972) 908-914.