@article{bwmeta1.element.bwnjournal-article-bcpv52z1p175bwm, author = {Mucha, Piotr}, title = {Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {175-180}, zbl = {0956.83006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p175bwm} }
Mucha, Piotr. Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Banach Center Publications, Tome 51 (2000) pp. 175-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p175bwm/
[000] [1] D. Bancel and Y. Choquet-Bruhat, Existence, uniqueness, and local stability for the Einstein-Maxwell-Boltzman system, Comm. Math. Phys. 33 (1973), 84-96.
[001] [2] J. Bernstein, Kinetic theory in the expanding universe, Cambridge University Press, 1988. | Zbl 1093.82002
[002] [3] K. Bitcheler, On the Cauchy problem for relativistic Boltzmann equation, Comm. Math. Phys. 4 (1967), 352-364.
[003] [4] G. Di Blasio, Differentiability of spatially homogeneous solution of the Boltzmann equation in the non Maxwellian case, Comm. Math. Phys. 38 (1974), 331-340. | Zbl 0298.35050
[004] [5] J. Ehlers, Survey of general relativity theory, in: W. Israel (ed.), Relativity, Astrophysics and Cosmology, Reidel, Dordrecht, 1973.
[005] [6] P. B. Mucha, The Cauchy problem for the Einstein-Boltzmann system, J. Appl. Anal. 4 (1998), 129-141. | Zbl 0914.35082
[006] [7] P. B. Mucha, Global existence for the Einstein-Boltzmann equation in the flat Robertson-Walker spacetime, Comm. Math. Phys. 203 (1999), 107-118. | Zbl 0937.83003