Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case
Mucha, Piotr
Banach Center Publications, Tome 51 (2000), p. 175-180 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209055
@article{bwmeta1.element.bwnjournal-article-bcpv52z1p175bwm,
     author = {Mucha, Piotr},
     title = {Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {175-180},
     zbl = {0956.83006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p175bwm}
}
Mucha, Piotr. Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Banach Center Publications, Tome 51 (2000) pp. 175-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p175bwm/

[000] [1] D. Bancel and Y. Choquet-Bruhat, Existence, uniqueness, and local stability for the Einstein-Maxwell-Boltzman system, Comm. Math. Phys. 33 (1973), 84-96.

[001] [2] J. Bernstein, Kinetic theory in the expanding universe, Cambridge University Press, 1988. | Zbl 1093.82002

[002] [3] K. Bitcheler, On the Cauchy problem for relativistic Boltzmann equation, Comm. Math. Phys. 4 (1967), 352-364.

[003] [4] G. Di Blasio, Differentiability of spatially homogeneous solution of the Boltzmann equation in the non Maxwellian case, Comm. Math. Phys. 38 (1974), 331-340. | Zbl 0298.35050

[004] [5] J. Ehlers, Survey of general relativity theory, in: W. Israel (ed.), Relativity, Astrophysics and Cosmology, Reidel, Dordrecht, 1973.

[005] [6] P. B. Mucha, The Cauchy problem for the Einstein-Boltzmann system, J. Appl. Anal. 4 (1998), 129-141. | Zbl 0914.35082

[006] [7] P. B. Mucha, Global existence for the Einstein-Boltzmann equation in the flat Robertson-Walker spacetime, Comm. Math. Phys. 203 (1999), 107-118. | Zbl 0937.83003