Time-periodic solutions of quasilinear parabolic differential equations II. Oblique derivative boundary conditions
Lieberman, Gary
Banach Center Publications, Tome 51 (2000), p. 163-173 / Harvested from The Polish Digital Mathematics Library

We study boundary value problems for quasilinear parabolic equations when the initial condition is replaced by periodicity in the time variable. Our approach is to relate the theory of such problems to the classical theory for initial-boundary value problems. In the process, we generalize many previously known results.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209054
@article{bwmeta1.element.bwnjournal-article-bcpv52z1p163bwm,
     author = {Lieberman, Gary},
     title = {Time-periodic solutions of quasilinear parabolic differential equations II. Oblique derivative boundary conditions},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {163-173},
     zbl = {0964.35072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p163bwm}
}
Lieberman, Gary. Time-periodic solutions of quasilinear parabolic differential equations II. Oblique derivative boundary conditions. Banach Center Publications, Tome 51 (2000) pp. 163-173. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p163bwm/

[000] [1] H. Amann, Periodic solutions of semi-linear parabolic equations, in: Non-linear Analysis: A Collection of Papers in Honor of Erich H. Rothe (L. Cesari, R. Kannan, H. Weinberger, eds.), Academic Press, New York 1978, 1-29.

[001] [5] G. C. Dong, Initial and nonlinear oblique boundary value problems for fully nonlinear parabolic equations, J. Partial Differential Equations 1 (1988), 12-42. | Zbl 0699.35152

[002] [6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1983. | Zbl 0562.35001

[003] [7] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Longman Scientific & Technical, Harlow, Essex, 1991. | Zbl 0731.35050

[004] [Kli] V. S. Klimov, Periodic and stationary solutions of quasilinear parabolic equations, Sib. Mat. Zh. 17 (1976), 530-532 [Russian]; English transl. in Sib. Math. J. 17 (1976), 530-533.

[005] [9] S. N. Kruzhkov, Periodic solutions to nonlinear equations, Differentsial'nye Uravneniya 6 (1970), 731-740 [Russian]; English transl. in Differential Equations 6 (1970), 560-566.

[006] [10] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R. I. 1968.

[007] [13] G. M. Lieberman, The nonlinear oblique derivative problem for quasilinear elliptic equations, Nonlinear Anal. 8 (1984) 49-65. | Zbl 0541.35032

[008] [14] G. M. Lieberman, Solvability of quasilinear elliptic equations with nonlinear boundary conditions. II, J. Functional Anal. 56 (1984), 210-219. | Zbl 0538.35035

[009] [17] G. M. Lieberman, Intermediate Schauder theory for second order parabolic equations IV. Time irregularity and regularity, Differential Integral Equations 5 (1992), 1219-1236. | Zbl 0785.35047

[010] [20] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore, 1996. | Zbl 0884.35001

[011] [21] G. M. Lieberman, Time-periodic solutions of linear parabolic differential equations, Comm. Partial Differential Equations 24 (1999), 631-663. | Zbl 0928.35012

[012] [22] G. M. Lieberman, Time-periodic solutions of quasilinear parabolic differential equations I. Dirichlet boundary conditions, (to appear). | Zbl 1002.35073

[013] [23] G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for fully nonlinear elliptic equations, Trans. Amer. Math. Soc. 295 (1986), 509-546. | Zbl 0619.35047

[014] [25] M. N. Nkashama, Semilinear periodic-parabolic equations with nonlinear boundary conditions, J. Differential Equations 130 (1996), 377-405.

[015] [26] I. I. Šmulev, Periodic solutions of the first boundary value problem for parabolic equations, Mat. Sb. 66 (1965), 398-410 [Russian]; English transl. in Amer. Math. Soc. Transl. 79 (1969), 215-229.

[016] [27] I. I. Šmulev, Quasi-periodic and periodic solutions of the problem with oblique derivative for parabolic equations, Differentsial'nye Uravneniya 5 (1969), 2225-2236 [Russian]; English transl. in Differential Equations 5 (1969), 2668-1676.

[017] [28] N. S. Trudinger, On an interpolation inequality and its application to nonlinear elliptic equations, Proc. Amer. Math. Soc. 95 (1985), 73-78. | Zbl 0579.35029

[018] [30] N. N. Ural'tseva, Gradient estimates for solutions of nonlinear parabolic oblique boundary problems, Contemp. Math. 127 (1992), 119-130. | Zbl 0770.35034

[019] [31] O. Vejvoda, Partial differential equations: time-periodic solutions, Martinus Nijhoff, The Hague/ Boston/ London, 1982.