In this paper, we survey some recent results on the asymptotic behavior, as time tends to infinity, of solutions to the Cauchy problems for the generalized Korteweg-de Vries-Burgers equation and the generalized Benjamin-Bona-Mahony-Burgers equation. The main results give higher-order terms of the asymptotic expansion of solutions.
@article{bwmeta1.element.bwnjournal-article-bcpv52z1p133bwm, author = {Karch, Grzegorz}, title = {Long-time asymptotics of solutions to some nonlinear wave equations}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {133-146}, zbl = {0954.35140}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p133bwm} }
Karch, Grzegorz. Long-time asymptotics of solutions to some nonlinear wave equations. Banach Center Publications, Tome 51 (2000) pp. 133-146. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p133bwm/
[000] [AB] L. Abdelouhab, Nonlocal dispersive equations in weighted Sobolev spaces, Differential Integral Equations 5 (1992), 307-338. | Zbl 0786.35110
[001] [Al] E. A. Alarcón, Existence and finite dimensionality of the global attractor for a class of nonlinear dissipative equations, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 893-916. | Zbl 0790.35062
[002] [ABH] J. P. Albert, J. L. Bona, and D. Henry, Sufficient conditions for stability of solitary-wave solutions of model equation for long waves, Physica D 24 (1987), 343-366. | Zbl 0634.35079
[003] [ABS] Ch. J. Amick, J. L. Bona, and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations 81 (1989), 1-49. | Zbl 0689.35081
[004] [BBM] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London Ser. A 272 (1972), 47-78. | Zbl 0229.35013
[005] [B] P. Biler, Asymptotic behavior in time of solutions to some equations generalizing Korteweg-de Vries-Burgers equation, Bull. Polish Acad. Sci. ser. Math. 32 (1984), 275-282. | Zbl 0561.35064
[006] [BKW] P. Biler, G. Karch, and W. A. Woyczynski, Asymptotics for multifractal conservation laws, Report of the Mathematical Institute, University of Wrocław, no. 103 (1998) 1-25.
[007] [BPM] V. Bisognin and G. Perla Menzala, Decay rates of the solutions of nonlinear dispersive equations, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 1231-1246. | Zbl 0814.35115
[008] [BL1] J. L. Bona and L. Luo, Decay of solutions to nonlinear, dispersive wave equations, Differential Integral Equations 6 (1993), 961-980. | Zbl 0780.35098
[009] [BL2] J. L. Bona and L. Luo, More results on the decay of solutions to nonlinear, dispersive wave equations , Discrete Contin. Dynam. Systems 1 (1995), 151-193. | Zbl 0870.35088
[010] [BPW2] J. L. Bona, K. S. Promislow, and C. E. Wayne, On the asymptotic behaviour of solutions to nonlinear, dispersive, dissipative wave equations, J. Math. and Computers in Simulation 37 (1994), 264-277. | Zbl 0823.35018
[011] [BPW] J. L. Bona, K. S. Promislow, and C. E. Wayne, Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations, Nonlinearity 8 (1995), 1179-1206. | Zbl 0837.35130
[012] [BS]HUKJ. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London Ser. A 278 (1975), 555-601. | Zbl 0306.35027
[013] [BKL] J. Bricmont, A. Kupiainen, and G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 47 (1994), 893-922. | Zbl 0806.35067
[014] [C] A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations 19 (1994), 827-872. | Zbl 0816.35108
[015] [C2] A. Carpio, Large-time behavior in incompressible Navier-Stokes equations, SIAM J. Math. Anal. 27 (1996), 449-475. | Zbl 0845.76019
[016] [CL] I. L. Chern and T. P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws, Comm. Math. Phys. 110 (1987), 1103-1133.
[017] [D2] D.B. Dix, Temporal asymptotic behavior of solutions to the Benjamin-Ono-Burgers equation, J. Differential Equations 90 (1991), 238-287. | Zbl 0784.35098
[018] [D] D. B. Dix, The dissipation of nonlinear dispersive waves: The case of asymptotically weak nonlinearity, Comm. Partial Differential Equations 17 (1992), 1665-1693. | Zbl 0762.35110
[019] [EVZ1] M. Escobedo, J. L. Vázquez, and E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rat. Mech. Anal. 124 (1993), 43-65. | Zbl 0807.35059
[020] [EVZ2] M. Escobedo, J. L. Vázquez, and E. Zuazua, A diffusion-convection equation in several space dimensions, Indiana Univ. Math. J. 42 (1993), 1413-1440. | Zbl 0791.35059
[021] [EZ] M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in , J. Funct. Anal. 100 (1991), 119-161. | Zbl 0762.35011
[022] [GKO] J. A. Goldstein, R. Kajikiya, and S. Oharu, On some nonlinear dispersive equations in several variables, Differential Integral Equations 3 (1990) 617-632. | Zbl 0735.35103
[023] [H] E. Hopf, The partial differential equation , Comm. Pure Appl. Math. 3 (1950), 201-230. | Zbl 0039.10403
[024] [K1] G. Karch, -decay of solutions to dissipative-dispersive perturbations of conservation laws, Ann. Polon. Math. 67 (1997), 65-86. | Zbl 0882.35017
[025] [K2] G. Karch, Asymptotic behaviour of solutions to some pseudoparabolic equations, Math. Methods Appl. Sci. 20 (1997), 271-289. | Zbl 0869.35057
[026] [K3] G. Karch, Selfsimilar large time behavior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear Analysis 35 (1999), 199-219. | Zbl 0923.35158
[027] [K4] G. Karch Large-time behavior of solutions to nonlinear wave equations: higher-order asymptotics, (1998) 1-24, Report of the Mathematical Institute, University of Wrocław, no. 96, sumitted. http://www.math.uni.wroc.pl/~karch
[028] [LP] T. P. Liu and M. Pierre, Source solutions and asymptotic behavior in conservation laws, J. Diff. Eqns. 51 (1984), 419-441. | Zbl 0545.35057
[029] [NS]HUKP. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, Amer. Math. Soc. Series, Transl. of Math. Monographs, vol. 133 (1994).
[030] [NS2]HUKP. I. Naumkin and I. A. Shishmarev, An asymptotic relationship between solutions of different nonlinear equations for large time values. I. Differentsialnye Uravneniya 30 (1994), no. 5, 873-881. Transl.: Differential Equations 30 (1994), no. 5, 806-814.
[031] [PW] C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differential Equations 141 (1997), 310-326. | Zbl 0890.35016
[032] [Saut]HUKJ.-C. Saut, Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. pures appl. 58 (1979), 21-61. | Zbl 0449.35083
[033] [SR]HUKM. E. Schonbek and S. V. Rajopadhye, Asymptotic behaviour of solutions to the Korteweg-de Vries-Burgers system, Ann. Inst. H. Poincaré, Analyse non linéaire 12 (1995), 425-457. | Zbl 0836.35144
[034] [W] C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Rational Mech. Anal. 138 (1997), 279-306. | Zbl 0882.35061
[035] [Z1] L. Zhang, Decay of solutions of generalized Benjamin-Bona-Mahony equations, Acta Math. Sinica, New Series 10 (1994), 428-438. | Zbl 0813.35111
[036] [Z2] L. Zhang, Decay of solutions of generalized Benjamin-Bona-Mahony-Burgers equations in n-space dimensions, Nonlinear Analysis T.M.A. 25 (1995), 1343-1396. | Zbl 0838.35118
[037] [Z] E. Zuazua, Weakly nonlinear large time behavior in scalar convection-diffusion equations, Differential Integral Equations 6 (1993), 1481-1491. | Zbl 0805.35054