Nonlinear nonlocal parabolic equations modeling the evolution of density of mutually interacting particles are considered. The inertial type nonlinearity is quadratic and nonlocal while the diffusive term, also nonlocal, is anomalous and fractal, i.e., represented by a fractional power of the Laplacian. Conditions for global in time existence versus finite time blow-up are studied. Self-similar solutions are constructed for certain homogeneous initial data. Monte Carlo approximation schemes by interacting particle systems are also mentioned.
@article{bwmeta1.element.bwnjournal-article-bcpv52z1p11bwm, author = {Biler, Piotr and Woyczy\'nski, Wojbor}, title = {Nonlocal quadratic evolution problems}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {11-24}, zbl = {0953.35070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p11bwm} }
Biler, Piotr; Woyczyński, Wojbor. Nonlocal quadratic evolution problems. Banach Center Publications, Tome 51 (2000) pp. 11-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p11bwm/
[000] [BPFS] C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence, Arch. Rat. Mech. Anal. 71 (1979), 237-256. | Zbl 0421.35037
[001] [B1] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles, III, Colloq. Math. 68 (1995), 229-239. | Zbl 0836.35076
[002] [B2] P. Biler, The Cauchy problem and self-similar solutions for a nonlinear parabolic equation, Studia Math. 114 (1995), 181-205. | Zbl 0829.35044
[003] [B3] P. Biler, Local and global solvability of parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), 715-743. | Zbl 0913.35021
[004] [BFW1] P. Biler, T. Funaki and W. A. Woyczyński, Fractal Burgers equations, J. Diff. Eq. 148 (1998), 9-46. | Zbl 0911.35100
[005] [BFW2] P. Biler, T. Funaki and W. A. Woyczyński, Interacting particle approximation for nonlocal quadratic evolution problems, Probab. Math. Statist. 19 (1999), 321-340. | Zbl 0985.60091
[006] [BHN] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Analysis T.M.A. 23 (1994), 1189-1209. | Zbl 0814.35054
[007] [BN] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math. 66 (1993), 131-145. | Zbl 0818.35046
[008] [BW] P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math. 59 (1999), 845-869. | Zbl 0940.35035
[009] [BT] M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation, Ann. Appl. Prob. 6 (1996), 818-861. | Zbl 0860.60038
[010] [C] M. Cannone, Ondelettes, paraproduits et Navier-Stokes, Diderot Editeur; Arts et Sciences, Paris, 1995.
[011] [FW] T. Funaki and W. A. Woyczyński, Interacting particle approximation for fractal Burgers equation, in: Stochastic Processes and related topics, A volume in memory of S. Cambanis, I. Karatzas, B. Rajput and M. Taqqu, Eds., Birkhäuser, Boston 1998, 141-166. | Zbl 0931.60087
[012] [GMO] Y. Giga, T. Miyakawa and H. Osada, Two-dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rat. Mech. Anal. 104 (1988), 223-250. | Zbl 0666.76052
[013] [G] J. Goodman, Convergence of the random vortex method, Comm. Pure Appl. Math. 40 (1987), 189-220. | Zbl 0635.35077
[014] [GK] E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. Math. 43 (1983), 971-980. | Zbl 0554.35104
[015] [HMV] M. A. Herrero, E. Medina and J. J. L. Velázquez, Finite-time aggregation into a single point in a reaction-diffusion system, Nonlinearity 10 (1997), 1739-1754. | Zbl 0909.35071
[016] [KO] S. Kotani and H. Osada, Propagation of chaos for Burgers' equation, J. Math. Soc. Japan 37 (1985), 275-294. | Zbl 0603.60072
[017] [McK] H. P. McKean, Propagation of chaos for a class of non-linear parabolic equations, in: Stochastic differential equations VII, Lecture Series in Differential Equations, Catholic University, Washington D.C., 1967, 177-194.
[018] [O] H. Osada, Propagation of chaos for two dimensional Navier-Stokes equation, Proc. Japan Ac. 62A (1986), 8-11, and Taniguchi Symp. PMMP, Katata, 1985, 303-334.
[019] [SZF] M. F. Shlesinger, G. M. Zaslavsky and U. Frisch, Eds., Lévy Flights and Related Topics in Physics, Lecture Notes in Phys. 450, Springer-Verlag, Berlin, 1995.
[020] [Sz] A. S. Sznitman, Topics in propagation of chaos, in: École d'été de St. Flour, XIX - 1989, Lecture Notes in Math. 1464, Springer-Verlag, Berlin, 1991, 166-251.
[021] [W] W. A. Woyczyński, Burgers-KPZ Turbulence, Göttingen Lectures, Lecture Notes in Math. 1700, Springer-Verlag, Berlin, 1998.