% We study the large time behaviour of entropy solutions of the Cauchy problem for a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial function is assumed to have bounded total variation. We prove the convergence of the solution to the entropy solution of a Riemann problem for the corresponding first order conservation law.
@article{bwmeta1.element.bwnjournal-article-bcpv52z1p119bwm, author = {Goncerzewicz, Jan and Hilhorst, Danielle}, title = {Large time behaviour of a class of solutions of second order conservation laws}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {119-132}, zbl = {0957.35075}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p119bwm} }
Goncerzewicz, Jan; Hilhorst, Danielle. Large time behaviour of a class of solutions of second order conservation laws. Banach Center Publications, Tome 51 (2000) pp. 119-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv52z1p119bwm/
[000] [BGH] M. Bertsch, J. Goncerzewicz and D. Hilhorst, Large time behaviour of solutions of scalar viscous and nonviscous conservation laws, Appl. Math. Lett. 12 (1999), 83-87 | Zbl 0942.35030
[001] [BT] Ph. Benilan and H. Touré, Sur l’équation générale , C. R. Acad. Sc. Paris 299 (1984), 919-922.
[002] [dB] E. Di Benedetto, Partial Differential Equations, Birkhäuser, 1995
[003] [vDdG] C. J. van Duijn and J. M. de Graaf, Large time behaviour of solutions of the porous medium equation with convection, J. Differential Equations 84 (1990), 183-203. | Zbl 0707.35073
[004] [EG] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press 1992. | Zbl 0804.28001
[005] [GM] G. Gagneux and M. Madaune-Tort, Analyse Mathématique de Modèles Non Linéaires de l'Ingénierie Pétrolière, Springer-Verlag 1996.
[006] [GR] E. Godlewski and P. A. Raviart, Hyperbolic Systems of Conservation Laws, SMAI 3/4, Ellipses-Edition Marketing, Paris 1991. | Zbl 0768.35059
[007] [IO1] A. M. Il'in and O. A. Oleinik, Behaviour of the solutions of the Cauchy problem for certain quasilinear equations for unbounded increase of the time, Dokl. Akad. Nauk S.S.S.R. 120 (1958), 25-28; Am. Math. Soc. Transl. 42 (1964), 19-23.
[008] [IO2] A. M. Il'in and O. A. Oleinik, Asymptotic behaviour of solutions of the Cauchy problem for some quasilinear equations for large values of time, Matem. Sb. 51 (1960), 191-216 (in Russian).
[009] [K] S. N. Kruzhkov, First order quasi-linear equations in several independent variables, Mat. USSR Sbornik 10 (1970), 217-243. Translation of: Mat. Sb. 81 (1970), 228-255. | Zbl 0215.16203
[010] [LSU] O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, Amer. Math. Soc., Providence, RI., 1968.
[011] [MNRR] J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman & Hall, 1996. | Zbl 0851.35002
[012] [MT] M. Maliki and H. Touré, Solution généralisée locale d'une équation parabolique quasilinéaire dégénérée du second ordre, Ann. Fac. Sci. Toulouse 7 (1998), 113-133.
[013] [M] P. Marcati, Weak solutions to a nonlinear partial differential equation of mixed type, Differential Integral Equations 9 (1996), 827-848. | Zbl 0870.35058
[014] [Se] D. Serre, Systèmes de Lois de Conservation. I (Hyperbolicité, entropies, ondes de choc), Diderot Editeur, 1996.
[015] [Si] J. Simon, Compact sets in the space , Ann. Mat. Pura Appl. CXLVI (1987), 65-96. | Zbl 0629.46031
[016] [W] H. F. Weinberger, Long-time behaviour for a regularized scalar conservation law in the absence of genuine nonlinearity, Ann. Inst. Henri Poincaré 7 (1990), 407-425. | Zbl 0726.35009