Twilled L(ie-)R(inehart)-algebras generalize, in the Lie-Rinehart context, complex structures on smooth manifolds. An almost complex manifold determines an "almost twilled pre-LR algebra", which is a true twilled LR-algebra iff the almost complex structure is integrable. We characterize twilled LR structures in terms of certain associated differential (bi)graded Lie and G(erstenhaber)-algebras; in particular the G-algebra arising from an almost complex structure is a (strict) d(ifferential) G-algebra iff the almost complex structure is integrable. Such G-algebras, endowed with a generator turning them into a B(atalin-)V(ilkovisky)-algebra, occur on the B-side of the mirror conjecture. We generalize a result of Koszul to those dG-algebras which arise from twilled LR-algebras. A special case thereof explains the relationship between holomorphic volume forms and exact generators for the corresponding dG-algebra and thus yields in particular a conceptual proof of the Tian-Todorov lemma. We give a differential homological algebra interpretation for twilled LR-algebras and by means of it we elucidate the notion of a generator in terms of homological duality for differential graded LR-algebras.
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p87bwm, author = {Huebschmann, Johannes}, title = {Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {87-102}, zbl = {1015.17023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p87bwm} }
Huebschmann, Johannes. Differential Batalin-Vilkovisky algebras arising from twilled Lie-Rinehart algebras. Banach Center Publications, Tome 51 (2000) pp. 87-102. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p87bwm/
[000] [1] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, alg-geom/9710032, Internat. Math. Res. Notices 4 (1998), 201-215. | Zbl 0914.58004
[001] [2] I. A. Batalin and G. S. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D 28 (1983) 2567-2582.
[002] [3] I. A. Batalin and G. S. Vilkovisky, Closure of the gauge algebra, generalized Lie equations and Feynman rules, Nucl. Phys. B 234 (1984), 106-124.
[003] [4] I. A. Batalin and G. S. Vilkovisky, Existence theorem for gauge algebra, Jour. Math. Phys. 26 (1985), 172-184.
[004] [5] F. A. Bogomolov, Hamiltonian Kähler varieties, Sov. Math. Dokl. 19 (1978), 1462-1465; translated from: Dokl. Akad. Nauk SSSR 243 (1978), 1101-1104.
[005] [6] F. A. Bogomolov, Kähler manifolds with trivial canonical class, preprint, Institut des Hautes Etudes Scientifiques 1981, pp. 1-32.
[006] [7] A. Cannas de Silva and A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Mathematics Lecture Notes, Volume 10, Amer. Math. Soc. 1999. | Zbl 1135.58300
[007] [8] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. | Zbl 0031.24803
[008] [9] A. Frölicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. USA 41 (1955), 641-644. | Zbl 0065.16502
[009] [10] A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms, Part I: Derivations in the graded ring of differential forms, Proc. Kon. Ned. Akad. Wet. Amsterdam 59 (1956), 338-359.
[010] [11] A. Frölicher and A. Nijenhuis, Some new cohomological invariants for complex manifolds, I, Proc. Kon. Ned. Akad. Wet. Amsterdam 59 (1956), 540-564. | Zbl 0072.40602
[011] [12] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. 78 (1963), 267-288. | Zbl 0131.27302
[012] [13] M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups and algebraic deformations, in: Deformation theory and quantum groups with applications to mathematical physics, M. Gerstenhaber and J. Stasheff (eds.), Cont. Math. 134, American Mathematical Society, Providence, (1992), 51-92. | Zbl 0788.17009
[013] [14] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. in Math. Phys. 195 (1994), 265-285. | Zbl 0807.17026
[014] [15] W. M. Goldman and J. J. Millson, The homotopy invariance of the Kuranishi space, Illinois J. of Math. 34 (1990), 337-367. | Zbl 0707.32004
[015] [16] J. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris 236 (1953), 1935-1937. | Zbl 0050.03201
[016] [17] J. Huebschmann, Poisson cohomology and quantization, J. für die Reine und Angew. Math. 408 (1990), 57-113. | Zbl 0699.53037
[017] [18] J.. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. für die Reine und Angew. Math. 510 (1999), 103-159. | Zbl 1034.53083
[018] [19] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin- Vilkovisky algebras, Annales de l'Institut Fourier 48 (1998), 425-440. | Zbl 0973.17027
[019] [20] J. Huebschmann, Extensions of Lie-Rinehart algebras and the Chern-Weil construction, in: Festschrift in honor of J. Stasheff's 60th birthday, Cont. Math. 227 (1999), 145-176, Amer. Math. Soc., Providence R. I. | Zbl 0946.17008
[020] [21] J. Huebschmann, Twilled Lie-Rinehart algebras and differential Batalin-Vilkovisky algebras, math.DG/9811069. | Zbl 1015.17023
[021] [22] J. Huebschmann, The modular class and master equation for Lie-Rinehart bialgebras, in preparation. | Zbl 1034.53083
[022] [23] J. Huebschmann and J. D. Stasheff, Formal solution of the master equation via HPT and deformation theory, math.AG/9906036. | Zbl 1036.17016
[023] [24] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I. II., Ann. of Math. 67 (1958), 328-401, 403-466. | Zbl 0128.16901
[024] [25] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae Mathematicae 41 (1995), 153-165. | Zbl 0837.17014
[025] [26] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Annales de l'Institut Fourier 46 (1996), 1243-1274. | Zbl 0858.17027
[026] [27] Y. Kosmann-Schwarzbach, The Lie bialgebroid of a Poisson-Nijenhuis manifold, Letters in Math. Physics 38 (1996), 421-428. | Zbl 1005.53060
[027] [28] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Lie groups and complete integrability. I. Drinfeld bigebras, dual extensions and their canonical representations, Annales Inst. H. Poincaré Série A (Physique théorique) 49 (1988), 433-460. | Zbl 0667.16005
[028] [29] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: E. Cartan et les Mathématiciens d'aujourd'hui, Lyon, 25-29 Juin, 1984, Astérisque, hors-série, (1985), 251-271.
[029] [30] B. H. Lian and G. J. Zuckerman, New perspectives on the BRST-algebraic structure of string theory, Comm. in Math. Phys. 154 (1993), 613-646. | Zbl 0780.17029
[030] [31] J.-H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. of Diff. Geom. 31 (1990), 501-526. | Zbl 0673.58018
[031] [32] K. Mackenzie, Double Lie algebroids and the double of a Lie bialgebroid, preprint 1998; math.DG/9808081.
[032] [33] K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452. | Zbl 0844.22005
[033] [34] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften No. 114, Springer, Berlin, 1963.
[034] [35] S. Majid, Matched pairs of Lie groups associated to solutions of the Yang-Baxter equation, Pac. J. of Math. 141 (1990), 311-332. | Zbl 0735.17017
[035] [36] Yu. I. Manin, Three constructions of Frobenius manifolds, Atiyah-Festschrift (to appear), math.QA/9801006.
[036] [37] T. Mokri, Matched pairs of Lie algebroids Glasgow Math. J. 39 (1997), 167-181. | Zbl 0886.22012
[037] [38] R. S. Palais, The cohomology of Lie rings, Proc. Symp. Pure Math. III (1961), 130-137. | Zbl 0126.03404
[038] [39] G. Rinehart, Differential forms for general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195-222. | Zbl 0113.26204
[039] [40] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, math. AG/9802006.
[040] [41] P. Stachura, Double Lie algebras and Manin triples, q-alg/9712040.
[041] [42] J. D. Stasheff, Deformation theory and the Batalin-Vilkovisky master equation, in: Deformation Theory and Symplectic Geometry, Proceedings of the Ascona meeting, June 1996, D. Sternheimer, J. Rawnsley, S. Gutt (eds.), Mathematical Physics Studies Vol. 20, Kluwer Academic Publishers, Dordrecht/Boston/London, 1997, 271-284. | Zbl 1149.81359
[042] [43] G. Tian, A note on Kaehler manifolds with , preprint.
[043] [44] A. N. Todorov, The Weil-Petersson geometry of the moduli space of su(n) (n ≥ 3) (Calabi-Yau) manifolds, I., Comm. Math. Phys. 126 (1989), 325-346. | Zbl 0688.53030
[044] [45] E. Witten, Mirror manifolds and topological field theory, in: Essays on mirror manifolds, S. T. Yau (ed.), International Press Co. Hong Kong, 1992, 230-310.
[045] [46] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560. | Zbl 0941.17016
[046] [47] S. Zakrzewski, Poisson structures on the Poincaré groups, Comm. Math. Phys. 185 (1997), 285-311. | Zbl 0874.22017