Linearization and star products
Chloup, Veronique
Banach Center Publications, Tome 51 (2000), p. 55-60 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209043
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p55bwm,
     author = {Chloup, Veronique},
     title = {Linearization and star products},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {55-60},
     zbl = {0981.53090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p55bwm}
}
Chloup, Veronique. Linearization and star products. Banach Center Publications, Tome 51 (2000) pp. 55-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p55bwm/

[000] [1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, Lett. Math. Phys. 1 (1977), 521-530. | Zbl 0377.53025

[001] [2] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products. Geometry and physics, Class. Quantum Grav. 14 (1997), A93-A107. | Zbl 0881.58021

[002] [3] V. Chloup-Arnould, Groupes de Lie-Poisson, Thèse de l'université de Metz (1996).

[003] [4] V. Chloup-Arnould, Linearization of some Poisson-Lie tensor, J. of Geometry and Physics 24 (1997), 46-52.

[004] [5] V. Chloup-Arnould, Star products on the algebra of polynomials on the dual of a semi-simple Lie algebra, Acad. Roy. Belg. Bull. Cl. Sci. (6) 8 (1997), no. 7-12, 263-269.

[005] [6] M. Cahen, S. Gutt and J. Rawnsley, Non linearizability of the Iwasawa Poisson-Lie structure, Lett. Math. Phys. 24 (1992), 79-83. | Zbl 0756.58015

[006] [7] J. F. Conn, Normal forms for analytic Poisson structures, Ann. of Math. 119 (1984), 577-601. | Zbl 0553.58004

[007] [8] J. F. Conn, Normal forms for smooth Poisson structures, Ann. of Math. 121 (1985), 565-593. | Zbl 0592.58025

[008] [9] V. G. Drinfeld, Hamiltonian structure on Lie groups and the geometric meaning of the classical Yang-Baxter equation, Sov. Math. Dokl. 27 (1) (1983), 68-71.

[009] [10] J. P. Dufour, Linéarisation de certaines structures de Poisson, J. Differential Geometry 32 (5) (1990), 415-428. | Zbl 0728.58011

[010] [11] S. Gutt, On the second Hochschild cohomology spaces for algebras of functions on a manifold, L.M.P. 39 (1997), 157-162. | Zbl 0874.16008

[011] [12] M. Kontsevich, Deformation quantization of Poisson manifold, I, q-alg 9709040.

[012] [13] Molinier, Linéarisation de structures de Poisson, thèse de l'université de Montpellier II (1993).

[013] [14] H. Omori, Y. Maeda and A. Yoshioka, Deformation quantizations of Poisson algebras, Contemp. Math. AMS 179 (1994), 213-240. | Zbl 0820.58027

[014] [15] A. Weinstein, The local structure of Poisson manifolds, J. Differential Geometry 18 (1983), 523-557. | Zbl 0524.58011

[015] [16] A. Weinstein, Poisson geometry of the principal series and non linearizable structures, J. Differential Geometry 25 (1987), 55-73. | Zbl 0592.58024