A variational principle introduced to select some symplectic connections leads to field equations which, in the case of the Levi Civita connection of Kähler manifolds, are equivalent to the condition that the Ricci tensor is parallel. This condition, which is stronger than the field equations, is studied in a purely symplectic framework.
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p31bwm, author = {Cahen, Michel and Gutt, Simone and Rawnsley, John}, title = {Symplectic connections with parallel Ricci tensor}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {31-41}, zbl = {1017.53068}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p31bwm} }
Cahen, Michel; Gutt, Simone; Rawnsley, John. Symplectic connections with parallel Ricci tensor. Banach Center Publications, Tome 51 (2000) pp. 31-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p31bwm/
[000] [1] A. Besse, Einstein Manifolds, Springer, 1986. | Zbl 1147.53001
[001] [2] P. Bieliavsky, Espaces symétriques symplectiques, thèse de doctorat, Université Libre de Bruxelles, 1995.
[002] [3] F. Bourgeois and M. Cahen, A variational principle for symplectic connections, J. Geometry and Physics, (sous presse). | Zbl 0963.53050
[003] [4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. II, Interscience Publ., 1969. Einstein Manifolds, Springer, 1986. | Zbl 0175.48504
[004] [5] A. Lichnerowicz, Quantum mechanics and deformations of geometrical dynamics, in: Quantum theory, groups, fields and particles, Reidel, 1983, 3-82.
[005] [6] O. Loos, Symmetric Spaces, Benjamin, 1969.
[006] [7] I. Vaisman, Symplectic curvature tensors, Monatshefte Math. 100 (1985), 299-327. | Zbl 0571.53025
[007] [8] H. Wu, Holonomy groups of indefinite metrics, Pac. J. Math. 20 (1967), 351-392. | Zbl 0149.39603