@article{bwmeta1.element.bwnjournal-article-bcpv51z1p263bwm, author = {Stachura, Piotr}, title = {C*-algebra of a differential groupoid}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {263-281}, zbl = {0967.22003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p263bwm} }
Stachura, Piotr. C*-algebra of a differential groupoid. Banach Center Publications, Tome 51 (2000) pp. 263-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p263bwm/
[000] [1] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I, Springer, Berlin, 1981. | Zbl 0463.46052
[001] [2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
[002] [3] J.-H. Lu and A. Weinstein, Poisson Lie Groups, dressing transformations and Bruhat decompositions, J. Diff. Geom. 31 (1990), 501-526. | Zbl 0673.58018
[003] [4] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, LMS Lecture Note Series 124, Cambridge Univ. Press, 1987.
[004] [5] T. Masuda, Y. Nakagami and S. L. Woronowicz, A C*-algebraic framework for the quantum groups, to appear. | Zbl 1053.46050
[005] [6] J. Renault, A groupoid approach to C*-algebras, Lecture Notes in Math. 793 (1980). | Zbl 0433.46049
[006] [7] A. Weinstein, Geometric Models for Noncommutative Algebras, Lecture Notes in Math. 227, preliminary version. | Zbl 1135.58300
[007] [8] S. L. Woronowicz, Unbounded Elements Affiliated with C*-Algebras and Non-Compact Quantum Groups, Comm. Math. Phys. 136 (1991), 399-432. | Zbl 0743.46080
[008] [9] S. L. Woronowicz, From Multiplicative Unitaries to Quantum Groups, Int. Journal of Math. 7, No.1 (1996), 127-149. | Zbl 0876.46044
[009] [10] S. L. Woronowicz, Pseudospaces, pseudogroups and Pontriyagin duality, Proc. of the International Conference on Math. Phys., Lausanne 1979, Lecture Notes in Math. 116.
[010] [11] S. Zakrzewski, Quantum and classical pseudogroups I, Comm. Math. Phys. 134 (1990), 347-370. | Zbl 0708.58030
[011] [12] S. Zakrzewski, Quantum and classical pseudogroups II, Comm. Math. Phys. 134 (1990), 371-395. | Zbl 0708.58031