Classifications of star products and deformations of Poisson brackets
Bonneau, Philippe
Banach Center Publications, Tome 51 (2000), p. 25-29 / Harvested from The Polish Digital Mathematics Library

On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209038
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p25bwm,
     author = {Bonneau, Philippe},
     title = {Classifications of star products and deformations of Poisson brackets},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {25-29},
     zbl = {0981.53089},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p25bwm}
}
Bonneau, Philippe. Classifications of star products and deformations of Poisson brackets. Banach Center Publications, Tome 51 (2000) pp. 25-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p25bwm/

[000] [BCG] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products, Classical and Quantum Gravity 14 (1997), A93-A107. | Zbl 0881.58021

[001] [B] P. Bonneau, Fedosov star products and one-differentiable deformations, Lett. Math. Phys. 45 (1997), 363-376. | Zbl 1006.53075

[002] [DWL] M. De Wilde and P. B. A. Lecomte, Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487-496. | Zbl 0526.58023

[003] [F1] B. V. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geom. 40 (1994), 213-238. | Zbl 0812.53034

[004] [F2] B.V. Fedosov, Deformation Quantization and Index Theory, Akademie Verlag, Berlin, 1996. | Zbl 0867.58061

[005] [FLS] M. Flato, A. Lichnerowicz and D. Sternheimer, Déformations 1-différentiables des algèbres de Lie attachées à une variété symplectique ou de contact, Comp. Math. 31 (1975), 47-82. | Zbl 0317.53039

[006] [Ge] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. 79 (1964), 59-103. | Zbl 0123.03101

[007] [Gu] S. Gutt, Equivalence of deformations and associated *-products, Lett. Math. Phys. 3 (1979), 297-309. | Zbl 0424.53031

[008] [K] M. Kontsevich, Deformation quantization of Poisson manifolds I, q-alg/9709040. | Zbl 1058.53065

[009] [Le] P.B.A. Lecomte, Applications of the cohomology of graded Lie algebras to formal deformations of Lie algebras, Lett. Math. Phys. 13 (1987), 157-166. | Zbl 0628.17009

[010] [Li] A. Lichnerowicz, Existence and equivalence of twisted products on a symplectic manifold, Lett. Math. Phys. 3 (1979), 495-502.

[011] [M] J. Moyal, Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45 (1949), 99-124. | Zbl 0031.33601

[012] [NT] R. Nest and B. Tsygan, Algebraic index theorem, Comm. Math. Phys. 172 (1995), 223-262. | Zbl 0887.58050