Veronese webs for bihamiltonian structures of higher corank
Panasyuk, Andriy
Banach Center Publications, Tome 51 (2000), p. 251-261 / Harvested from The Polish Digital Mathematics Library
Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209037
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p251bwm,
     author = {Panasyuk, Andriy},
     title = {Veronese webs for bihamiltonian structures of higher corank},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {251-261},
     zbl = {0996.53053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p251bwm}
}
Panasyuk, Andriy. Veronese webs for bihamiltonian structures of higher corank. Banach Center Publications, Tome 51 (2000) pp. 251-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p251bwm/

[000] [1] J. F. Adams, Lectures on Lie groups, W. A. Benjamin, Inc., 1969. | Zbl 0206.31604

[001] [2] V. I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, 1978. | Zbl 0386.70001

[002] [3] A. V. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), No 1; English transl. in: Math. USSR-Izv. 38 (1992), 69-90. | Zbl 0744.58030

[003] [4] N. Bourbaki, Groupes et algèbres de Lie, VII,VIII, Hermann, 1975.

[004] [5] N. Bourbaki, Groupes et algèbres de Lie, IX, Masson, 1982.

[005] [6] S. S. Chern and P. A. Griffiths, An inequality for the rank of a web and webs of maximum rank, Ann. Scuola Norm. Sup. Pisa 5 (1978), 539-557. | Zbl 0402.57001

[006] [7] S. S. Chern and P. A. Griffiths, Abel's theorem and webs, Jahresber. Deutsch. Math.-Verein. 80 (1978), 13-110. | Zbl 0386.14002

[007] [8] A. T. Fomenko and A. S. Mishchenko, Euler equations in finite-dimensional Lie groups, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), 396-416; English transl. in: Math USSR-Izv. 12 (1978). | Zbl 0383.58006

[008] [9] A. T. Fomenko, Integrability and nonintegrability in geometry and mechanics, Kluwer Academic Publishers, 1988. | Zbl 0675.58018

[009] [10] I. M. Gelfand and I. S. Zakharevich, Spectral theory for a pair of skew-symmetrical operators on S1, Functional Anal. Appl. 23 (1989), 85-93.

[010] [11] I. M. Gelfand and I. S. Zakharevich, Webs, Veronese curves, and bihamiltonian systems, J. Funct. Anal. 99 (1991), 150-178. | Zbl 0739.58021

[011] [12] I. M. Gelfand and I. S. Zakharevich, On the local geometry of a bihamiltonian structure, in: The Gelfand mathematical seminars, 1990-1992, Birkhäuser, Boston, 1993, 51-112. | Zbl 0809.57013

[012] [13] I. M. Gelfand and I. S. Zakharevich, Webs, Lenard schemes, and the local geometry of bihamiltonian Toda and Lax structures, math.DG/9903080.

[013] [14] I. S. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation, math.SG/9908034. | Zbl 0994.37034

[014] [15] A. L. Onishchik and E. B. Vinberg, Lie groups and algebraic groups, Springer-Verlag, 1990. | Zbl 0722.22004

[015] [16] R. Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616-618. | Zbl 0099.36802