First as an application of the local structure theorem for Nambu-Poisson tensors, we characterize them in terms of differential forms. Secondly left invariant Nambu-Poisson tensors on Lie groups are considered.
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p243bwm, author = {Nakanishi, Nobutada}, title = {Nambu-Poisson Tensors on Lie Groups}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {243-249}, zbl = {0966.53053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p243bwm} }
Nakanishi, Nobutada. Nambu-Poisson Tensors on Lie Groups. Banach Center Publications, Tome 51 (2000) pp. 243-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p243bwm/
[000] [1] S. S. Chern, On integral geometry in Klein spaces, Ann. of Math. 43 (1942), 178-189. | Zbl 68.0462.02
[001] [2] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124. | Zbl 0031.24803
[002] [3] B.-Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974), 145-159. | Zbl 0261.53039
[003] [4] P. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996). 103-116. | Zbl 0849.70014
[004] [5] N. Nakanishi, On Nambu-Poisson manifolds, Rev. Math. Phys. 10 (1998), 499-510. | Zbl 0929.70015
[005] [6] L. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys. 160 (1994), 295-315. | Zbl 0808.70015
[006] [7] I. Vaisman, Lectures on the geometry of Poisson manifolds, Birkhäuser, Basel, 1994.
[007] [8] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557. | Zbl 0524.58011