All homogeneous spaces G/K (G is a simple connected compact Lie group, K a connected closed subgroup) are enumerated for which arbitrary Hamiltonian flows on T*(G/K) with G-invariant Hamiltonians are integrable in the class of Noether integrals and G-invariant functions.
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p231bwm, author = {Mykytyuk, Ihor and Stepin, Anatoly}, title = {Classification of almost spherical pairs of compact simple Lie groups}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {231-241}, zbl = {0970.22013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p231bwm} }
Mykytyuk, Ihor; Stepin, Anatoly. Classification of almost spherical pairs of compact simple Lie groups. Banach Center Publications, Tome 51 (2000) pp. 231-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p231bwm/
[000] [Ar] Sh. Araki, On root systems and infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 90-126.
[001] [Bo1] N. Bourbaki, Lie groups and algebras, I-III, Mir, Moscow, 1970 (in Russian).
[002] [Bo2] N. Bourbaki, Lie groups and algebras, IV-VI, Mir, Moscow, 1972 (in Russian).
[003] [Bo3] N. Bourbaki, Lie groups and algebras, VII,VIII, Mir, Moscow, 1978 (in Russian).
[004] [Br] M. Brion, Classification des espaces homogenes spheriques, Compositio Math. 63 (1987), 189-208.
[005] [Ch] M. L. Chumak, Integrable G-invariant Hamiltonian systems and uniform spaces with simple spectrum, Func. Anal. and its Applic. 20 (1986), 91-92.
[006] [Dy1] E. B. Dynkin, Maximal subgroups of classical groups, Trudy Moskov. Mat. Obshchestva 1 (1952), 39-151 (in Russian); Am. Math. Soc. Transl. 2 (1957), 245-378.
[007] [Dy2] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Matem. Sbornik 30 (1952), 349-462 (in Russian); Am. Math. Soc. Transl. 2 (1957), 111-244. | Zbl 0048.01701
[008] [El] A. G. Elashvili, Canonical form and stationary subalgebras of points in general position of simple linear Lie groups, Func. Anal. and its Applic. 6 (1972), 51-62 (in Russian).
[009] [GG] M. Goto and F. Grosshans, Semisimple Lie algebras, Vol. 38, Lecture Notes in Pure and Applied Math., New York and Basel, 1978. | Zbl 0391.17004
[010] [GS1] V. Guillemin and S. Sternberg, Multiplicity-free spaces, J. Differential Geometry 19 (1984), 31-56. | Zbl 0548.58017
[011] [GS2] V. Guillemin and S. Sternberg, On collective complete integrability according to the method of Thimm, Ergod. Theory and Dynam. Syst. 3 (1983), 219-230. | Zbl 0511.58024
[012] [GS3] V. Guillemin and S. Sternberg, Geometric asymptotics, AMS, Providence, Rhode Island, 1977.
[013] [He] S. Helgason, Differential geometry and symmetric spaces, Academic Press, 1962. | Zbl 0111.18101
[014] [IW] K. Ii and S. Watanabe, Complete integrability of the geodesic flows on symmetric spaces, in: Geometry of Geodesics and Related Topics, Tokyo, K. Shiohama (ed.), North-Holland, 1984, 105-124.
[015] [Kr] M. Kramer, Sphärische Untergruppen in kompakten zusammenhängenden Liegruppen, Compositio Math. 38 (1979), 129-153. | Zbl 0402.22006
[016] [Mi] A. S. Mishchenko, Integration of geodesic flows on symmetric spaces, Mat. Zametki 32 (1982), 257-262 (in Russian). | Zbl 0487.58010
[017] [My1] I. V. Mykytiuk, Homogeneous spaces with integrable G-invariant Hamiltonian flows, Math. USSR Izvestiya 23 (1984), 511-523.
[018] [My2] I. V. Mykytiuk, On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces, Math. USSR Sbornik 57 (1987), 527-546.
[019] [On] A. L. Onishchik, Inclusion relations between transitive compact transformation groups, Trudy Mosc. Matem. Obshchestva 11 (1962), 199-242 (in Russian). | Zbl 0192.12601
[020] [PM] A. K. Prykarpatsky and I. V. Mykytiuk, Algebraic integrability of nonlinear dynamical systems on manifolds. Classical and quantum aspects, Vol. 443, Math. and its Appl., Kluwer Academic Publishers, 1998. | Zbl 0937.37055
[021] [Ti] A. Timm, Integrable geodesic flows on homogeneous spaces, Ergod. Theory and Dynam. Syst. 1 (1981), 495-517.