We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of a Batalin-Vilkovisky algebra. While such an operator of order 2 defines a Gerstenhaber (Lie) algebra structure on A, an operator of an order higher than 2 (Koszul-Akman definition) leads to the structure of a strongly homotopy Lie algebra (-algebra) on A. This allows us to give a definition of a Batalin-Vilkovisky algebra up to homotopy. We also make a conjecture which is a generalization of the formality theorem of Kontsevich to the Batalin-Vilkovisky algebra level.
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p131bwm, author = {Kravchenko, Olga}, title = {Deformations of Batalin-Vilkovisky algebras}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {131-139}, zbl = {1015.17029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p131bwm} }
Kravchenko, Olga. Deformations of Batalin-Vilkovisky algebras. Banach Center Publications, Tome 51 (2000) pp. 131-139. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p131bwm/
[000] [A] F. Akman, On some generalizations of Batalin-Vilkovisky algebras, J. Pure Appl. Algebra 120 (1997), no. 2, 105-141 | Zbl 0885.17020
[001] [BK] S. Barannikov and M. Kontsevich, Frobenius manifolds and formality of Lie algebras of polyvector fields, Internat. Math. Res. Notices 1998, no. 4, 201-215. | Zbl 0914.58004
[002] [BDA] K. Bering, P. H. Damgaard and J. Alfaro, Algebra of Higher Antibrackets, Nucl. Phys. B478 (1996) 459-504. | Zbl 0925.81398
[003] [G] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no. 2, 265-285. | Zbl 0807.17026
[004] [GK] E. Getzler and M. Kapranov, Cyclic operads and cyclic homology, in ``Geometry, topology, and physics,'' International Press, Cambridge, MA, 1995, pp. 167-201. | Zbl 0883.18013
[005] [HS] V. Hinich and V. Schechtman, Homotopy Lie algebras, in: I. M. Gel'fand Seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 1-28. | Zbl 0823.18004
[006] [H] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras, and Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 425-440. | Zbl 0973.17027
[007] [K] M. Kontsevich, Deformation quantization of Poisson manifolds, I, preprint, q-alg/9709040. | Zbl 1058.53065
[008] [KS] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applic. Math. 41 (1995) 153-165. | Zbl 0837.17014
[009] [Ko] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan, (Lyon, 1984). Astérisque 1985, Hors Série, 257-271.
[010] [LM] T. Lada and M. Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 2147-2161. | Zbl 0999.17019
[011] [LS] T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993), 1087-1104. | Zbl 0824.17024
[012] [LZ] B. H. Lian and G. J. Zuckerman, New perpectives on the BRST-algebraic structure of string theory, Comm. Math. Phys. 154 (1993), 613-646. | Zbl 0780.17029
[013] [Li] M. Livernet, Homologie des algèbres de matrices d'une algèbre associative à homotopie près, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 113-116.
[014] [L] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269-293.
[015] [M] Yu. Manin, Three constructions of Frobenius manifolds: a comparative study, preprint, math.QA/9801006
[016] [P] M. Penkava, algebras and their cohomology, preprint, q-alg/9512014.
[017] [PS] M. Penkava and A. Schwarz, On some algebraic structures arising in string theory. Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Internat. Press, Cambridge, MA, 1994, 219-227. | Zbl 0871.17021
[018] [R] C. Roger, Algèbres de Lie graduées et quantification, in: Symplectic Geometry and Mathematical Physics, Progress in Math. (Birkhäuser) no. 99, 1991, 374-421.
[019] [Sch] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, preprint, math/9802006.
[020] [S] J. Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach, hep-th/9712157, Secondary calculus and cohomological physics (Moscow, 1997), 195-210, Contemp. Math., 219, Amer. Math. Soc., Providence, RI, 1998.
[021] [Schw] A. Schwarz, Geometry of Batalin-Vilkovisky quantization, Comm. Math. Phys. 155 (1993), no. 2, 249-260. | Zbl 0786.58017
[022] [T] D. Tamarkin, Another proof of M. Kontsevich formality theorem, preprint, math/9803025.
[023] [V] A. Vaintrob, Lie algebroids and homological fields, Russian Math. Surveys 52 (1997), no.2. | Zbl 0955.58017
[024] [W] E. Witten, A note on the antibracket formalism, Mod. Phys. Lett., A5, 1990, 487-494. | Zbl 1020.81931
[025] [Xu] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, dg-ga/9703001, Comm. Math. Phys. 200 (1999), no. 3, 545-560. | Zbl 0941.17016