Poisson structures on 2N having only two symplectic leaves: the origin and the rest
Zakrzewski, S.
Banach Center Publications, Tome 51 (2000), p. 11-13 / Harvested from The Polish Digital Mathematics Library

Examples of Poisson structures with isolated non-symplectic points are constructed from classical r-matrices.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:209023
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p11bwm,
     author = {Zakrzewski, S.},
     title = {Poisson structures on $$\mathbb{R}$^{2N}$ having only two symplectic leaves: the origin and the rest},
     journal = {Banach Center Publications},
     volume = {51},
     year = {2000},
     pages = {11-13},
     zbl = {0992.53061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p11bwm}
}
Zakrzewski, S. Poisson structures on $ℝ^{2N}$ having only two symplectic leaves: the origin and the rest. Banach Center Publications, Tome 51 (2000) pp. 11-13. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p11bwm/

[000] [1] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997) 379-394. | Zbl 0902.58013

[001] [2] A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238.

[002] [3] S. Zakrzewski, Phase spaces related to standard classical r-matrices, J. Phys. A: Math. Gen. 29 (1996), 1841-1857. | Zbl 0924.58023