We show that a modular class arises from the existence of two generating operators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P) such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A whose -cohomology class is well-defined. We give simple proofs of its properties. The modular class of an orientable Poisson manifold is an example. We analyse the relationships between generating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements of degree 0, and left actions on the elements of top degree. We show that the modular class of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with representation on a line bundle.
@article{bwmeta1.element.bwnjournal-article-bcpv51z1p109bwm, author = {Kosmann-Schwarzbach, Yvette}, title = {Modular vector fields and Batalin-Vilkovisky algebras}, journal = {Banach Center Publications}, volume = {51}, year = {2000}, pages = {109-129}, zbl = {1018.17020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p109bwm} }
Kosmann-Schwarzbach, Yvette. Modular vector fields and Batalin-Vilkovisky algebras. Banach Center Publications, Tome 51 (2000) pp. 109-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv51z1p109bwm/
[000] [1] K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, Pitman Res. Notes in Math. 174, Longman, Harlow, 1988. | Zbl 0671.58001
[001] [2] J.-L. Brylinski, A differential complex for Poisson manifolds, J. Diff. Geom. 28 (1988), 93-114. | Zbl 0634.58029
[002] [3] J.-L. Brylinski and G. Zuckerman, The outer derivation of a complex Poisson manifold, J. reine angew. Math. 506 (1999), 181-189. | Zbl 0919.58029
[003] [4] P. Cartier, Some fundamental techniques in the theory of integrable systems, in: Lectures on Integrable Systems, O. Babelon, P. Cartier and Y. Kosmann-Schwarzbach, eds., World Scientific, Singapore, 1994, 1-41.
[004] [5] J.-P. Dufour and A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci. Paris 312, Série I (1991), 137-140. | Zbl 0719.58001
[005] [6] S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quarterly J. Math., to appear. | Zbl 0968.58014
[006] [7] M. Gerstenhaber and S. D. Schack, Algebras, bialgebras, quantum groups, and algebraic deformations, Contemp. Math. 134 (1992), M. Gerstenhaber and J. D. Stasheff, eds., 51-92. | Zbl 0788.17009
[007] [8] J. Grabowski, G. Marmo and A. M. Perelomov, Poisson structures: towards a classification, Mod. Phys. Lett. A8 (1993), 1719-1733. | Zbl 1020.37529
[008] [9] J. Huebschmann, Poisson cohomology and quantization, J. reine angew. Math. 408 (1990), 459-489.
[009] [10] J. Huebschmann, Duality for Lie-Rinehart algebras and the modular class, J. reine angew. Math. 510 (1999), 103-159. | Zbl 1034.53083
[010] [11] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier 48 (1998), 425-440. | Zbl 0973.17027
[011] [12] J. Huebschmann, Differential Batalin-Vilkovisky algebras arrising from twilled Lie-Rinehart algebras, this volume. | Zbl 1015.17023
[012] [13] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165. | Zbl 0837.17014
[013] [14] Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Henri Poincaré A53 (1990), 35-81, and Dualization and deformation of Lie brackets on Poisson manifolds, in: Differential Geometry and its Applications, J. Janyška and D. Krupka, eds., World Scientific, Singapore, 1990, 79-84.
[014] [15] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Astérisque, hors série, Elie Cartan et les mathématiques d'aujourd'hui, Soc. Math. Fr., 1985, 257-271.
[015] [16] Z.-J. Liu and P. Xu, On quadratic Poisson structures, Lett. Math. Phys. 26 (1992), 33-42. | Zbl 0773.58007
[016] [17] K. C. H. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987. | Zbl 0683.53029
[017] [18] K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452. | Zbl 0844.22005
[018] [19] Yu. I. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, Colloq. Publ. 47, Amer. Math. Soc., Providence, RI, 1999.
[019] [20] C.-M. Marle, The Schouten-Nijenhuis bracket and interior products, J. Geom. Phys. 23 (1997), 350-359. | Zbl 0934.58002
[020] [21] R. S. Palais, The cohomology of Lie rings, Proc. Symp. Pure Math. 3, Amer. Math. Soc., Providence R.I. 1961, 245-248. | Zbl 0126.03404
[021] [22] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovisky algebras, preprint math.AG/9802006.
[022] [23] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser, Basel, 1994.
[023] [24] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394. | Zbl 0902.58013
[024] [25] A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238.
[025] [26] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560. | Zbl 0941.17016