This paper deals with the propagation of waves around a circular obstacle. The medium is heterogeneous: the velocity is smaller in the inner region and greater in the outer region. The interface separating the two regions is also circular, and the obstacle is located eccentrically inside it. The different front portraits are classified.
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p305bwm, author = {Volford, Andr\'as and Simon, Peter and Farkas, Henrik}, title = {Waves of excitations in heterogeneous annular region, asymmetric arrangement}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {305-320}, zbl = {1115.58301}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p305bwm} }
Volford, András; Simon, Peter; Farkas, Henrik. Waves of excitations in heterogeneous annular region, asymmetric arrangement. Banach Center Publications, Tome 50 (1999) pp. 305-320. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p305bwm/
[000] [1] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York, 1978. | Zbl 0386.70001
[001] [2] V. I. Arnold, Singularities of Caustics and Wave Fronts, Math. Appl. (Soviet Ser.) 62, Kluwer Academic Publ., Dordrecht, 1990.
[002] [3] H. Farkas, I. Farago and P. L. Simon, Qualitative properties of conductive heat transfer, in: Thermodynamics of Energy Conversion and Transport, S. Sieniutycz and A. De Vos (eds.), Springer (to appear).
[003] [4] H. Farkas, I. Mudri, Shape-preserving time-dependences in heat conduction, Acta Phys. Hungar. 55 (1984), 267-273.
[004] [5] P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomath. 28, Springer, Berlin, 1979. | Zbl 0403.92004
[005] [6] J. Guckenheimer, Ph. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci. 42, Springer, New York, 1983.
[006] [7] S. Janeczko, I. Stewart, Symplectic singularities and optical diffraction, in: Singularity Theory and its Applications, Part II, M. Roberts and I. Stewart (eds.), Lecture Notes in Math. 1463, Springer, Berlin, 1991, 220-255. | Zbl 0742.58020
[007] [8] A. Lázár, H. D. Försterling, H. Farkas, P. L. Simon, A. Volford, Z. Noszticzius, Waves of excitations on nonuniform membrane rings, caustics, and reverse involutes, Chaos 7 (1997), 731-737.
[008] [9] A. Lázár, Z. Noszticzius, H. Farkas, H. D. Försterling, Involutes: the geometry of chemical waves rotating in annular membranes, Chaos 5 (1995), 443-447.
[009] [10] J. D. Murray, Mathematical Biology, Biomathematics 19, Springer, Berlin, 1989.
[010] [11] Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L. Swinney, W. Y. Tam, Sustained chemical waves in an annular gel reactor: a chemical pinwheel, Nature 329 (1987), 619-620.
[011] [12] J. Sainhas, R. Dilão, Wave optics in reaction-diffusion systems, Phys. Rev. Lett. 80 (1998), 5216-5219. | Zbl 1040.65085
[012] [13] S. K. Scott, Oscillations, Waves and Chaos in Chemical Kinetics, Oxford University Press, Oxford, 1994.
[013] [14] S. Sieniutycz, H. Farkas, Chemical waves in confined regions by Hamilton-Jacobi-Bellman theory, Chemical Engineering Science 52 (1997), 2927-2945.
[014] [15] P. L. Simon, H. Farkas, Geometric theory of trigger waves. A dynamical system approach, J. Math. Chem. 19 (1996), 301-315. | Zbl 0888.92041
[015] [16] N. Wiener, A. Rosenblueth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle, Arch. Inst. Cardiol. México 16 (1946), 205-265. | Zbl 0063.08249