On geometry of fronts in wave propagations
Tanabé, Susumu
Banach Center Publications, Tome 50 (1999), p. 287-304 / Harvested from The Polish Digital Mathematics Library

We give a geometric descriptions of (wave) fronts in wave propagation processes. Concrete form of defining function of wave front issued from initial algebraic variety is obtained by the aid of Gauss-Manin systems associated with certain complete intersection singularities. In the case of propagations on the plane, we get restrictions on types of possible cusps that can appear on the wave front.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:209015
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p287bwm,
     author = {Tanab\'e, Susumu},
     title = {On geometry of fronts in wave propagations},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {287-304},
     zbl = {0951.35074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p287bwm}
}
Tanabé, Susumu. On geometry of fronts in wave propagations. Banach Center Publications, Tome 50 (1999) pp. 287-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p287bwm/

[000] [1] A. G. Aleksandrov and S. Tanabé, Gauss-Manin connexions, logarithmic forms and hypergeometric functions, in: Geometry from the Pacific Rim (Singapore 1994), Walter de Gruyter, Berlin, 1997, 1-21. | Zbl 0888.32017

[001] [2] P. Appell and J. Kampé de Fériet, Fonctions hypergeometriques et hypersphériques, Gauthier-Villars, Paris, 1926.

[002] [3] M. F. Atiyah, R. Bott, L. Gårding, Lacunas for hyperbolic differential operators with constant coefficients, II, Acta Math. 131 (1973), 145-206.

[003] [4] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. | Zbl 0186.26101

[004] [5] L. Gårding, Sharp fronts of paired oscillatory integrals, Publ. Res. Inst. Math. Sci. 12 (1976/77), suppl., 53-68; Corrections: Publ. Res. Inst. Math. Sci. 13 (1977/78), 821.

[005] [6] G.-M. Greuel, Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. | Zbl 0285.14002

[006] [7] G.-M. Greuel, H. A. Hamm, Invarianten quasihomogener vollständiger Durchschnitte, Invent. Math. 49 (1978), 67-86.

[007] [8] Y. Hamada, The singularities of the solutions of the Cauchy problem, Publ. Res. Inst. Math. Sci. 5 (1969), 21-40. | Zbl 0203.40702

[008] [9] Y. Hamada, J. Leray, C.Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié; hyperbolicité partielle, J. Math. Pures Appl. (9) 55 (1976), 297-352. | Zbl 0307.35056

[009] [10] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. I Grundlehren Math. Wiss. 256, Springer, Berlin, 1983. | Zbl 0521.35002

[010] [11] E. Leichtnam, Le problème de Cauchy ramifié linéaire pour des données à singularités algébriques, Mém. Soc. Math. France 53 (1993), 128 pp. | Zbl 0819.35007

[011] [12] Kh. M. Malikov, Over-determination of a system of differential equations for versal integrals of type A, D, E (in Russian), Differ. Uravn. 18 (1982), 1394-1401; English transl.: Differential Equations 18 (1982), 986-991.

[012] [13] V. P. Palamodov, Deformations of complex spaces, in: Several Complex Variables IV, Encyclopaedia Math. Sci. 10, Springer, Berlin, 1990, 105-194.

[013] [14] I. G. Petrovskiĭ, On the diffusion of waves and the lacunas for hyperbolic equations, Mat. Sb.(N.S.) 17(59) (1945), 289-370.

[014] [15] F. Pham, Introduction à l'étude topologique des singularités de Landau, Gauthier-Villars, Paris, 1967. | Zbl 0202.20401

[015] [16] S. Tanabé, Lagrangian variety and the condition for the presence of sharp front of the fundamental solution to Cauchy problem, Sci. Papers College Arts Sci. Univ. Tokyo 42 (1992), 149-159. | Zbl 0802.35092

[016] [17] S. Tanabé, Transformée de Mellin des intégrales fibres de courbe espace associées aux singularités isolées d'intersection complète quasihomogènes, preprint MPIM Bonn, 1998, 28 pp.

[017] [18] S. Tanabé, Connexion de Gauss-Manin associée à la déformation verselle des singularités isolées d'hypersurface et son application au XVIe problème de Hilbert, Ann. Institut Fourier (Grenoble), submitted.

[018] [19] S. Tanabé, An application of Gauss-Manin systems to the asymptotic analysis around singular locus in wave propagations, Ann. Institut Fourier (Grenoble), submitted.

[019] [20] A. N. Varchenko, On normal forms of nonsmoothness of solutions of hyperbolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 652-665; English transl.: Math. USSR-Izv. 30 (1988), 615-628. | Zbl 0646.35054

[020] [21] V. A. Vassiliev, Ramified Integrals, Singularities and Lacunas, Math. Appl. 315, Kluwer Acad. Publ., Dordrecht, 1995. | Zbl 0935.32026