This article extends to three dimensions results on the curvature of the conflict curve for pairs of convex sets of the plane, established by Siersma [3]. In the present case a conflict surface arises, equidistant from the given convex sets. The Gaussian, mean curvatures and the location of umbilic points on the conflict surface are determined here. Initial results on the Darbouxian type of umbilic points on conflict surfaces are also established. The results are expressed in terms of the principal directions and on the curvatures of the borders of the given convex sets.
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p277bwm, author = {Sotomayor, Jorge and Siersma, Dirk and Garcia, Ronaldo}, title = {Curvatures of conflict surfaces in Euclidean 3-space}, journal = {Banach Center Publications}, volume = {50}, year = {1999}, pages = {277-285}, zbl = {0983.53003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p277bwm} }
Sotomayor, Jorge; Siersma, Dirk; Garcia, Ronaldo. Curvatures of conflict surfaces in Euclidean 3-space. Banach Center Publications, Tome 50 (1999) pp. 277-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p277bwm/
[000] [1] G. Darboux, Sur la forme des lignes de courbure dans le voisinage d'un ombilic, in: Leçons sur la théorie générale des surfaces, Vol. IV, Gauthier-Villars, Paris, 1896, 448-465.
[001] [2] I. R. Porteous, Geometric Differentiation for the Intelligence of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1994. | Zbl 0806.53001
[002] [3] D. Siersma, Properties of conflict sets in the plane, this volume. | Zbl 0959.53003
[003] [4] J. Sotomayor and C. Gutiérrez, Structurally stable configurations of lines of principal curvature, Astérisque 98-99 (1982), 195-215. | Zbl 0521.53003
[004] [5] J. Sotomayor and C. Gutiérrez, Lines of Curvature and Umbilic Points on Surfaces. Text of Course delivered at the XVIII Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro, 1991. | Zbl 1160.53304
[005] [6] M. Spivak, A Comprehensive Introduction to Differential Geometry, vols. 1, 3, Publish or Perish, Wilmington, 1979.
[006] [7] J. B. Wilker, Equidistant sets and their connectivity properties, Proc. Amer. Math. Soc. 47 (1975), 446-452. | Zbl 0295.50017