Bifurcations of affine invariants for one-parameter family of generic convex plane curves
Sano, Takashi
Banach Center Publications, Tome 50 (1999), p. 227-236 / Harvested from The Polish Digital Mathematics Library

We study affine invariants of plane curves from the view point of the singularity theory of smooth functions. We describe how affine vertices and affine inflexions are created and destroyed.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:209011
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p227bwm,
     author = {Sano, Takashi},
     title = {Bifurcations of affine invariants for one-parameter family of generic convex plane curves},
     journal = {Banach Center Publications},
     volume = {50},
     year = {1999},
     pages = {227-236},
     zbl = {0973.53002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p227bwm}
}
Sano, Takashi. Bifurcations of affine invariants for one-parameter family of generic convex plane curves. Banach Center Publications, Tome 50 (1999) pp. 227-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p227bwm/

[000] [1] V. I. Arnol'd, Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557-582. | Zbl 0343.58003

[001] [2] W. Blaschke, Vorlesungen über Differentialgeometrie II, Springer, Berlin, 1923. | Zbl 49.0499.01

[002] [4] J. W. Bruce, Isotopies of generic plane curves, Glasgow Math. J. 24 (1983), 195-206. | Zbl 0513.58007

[003] [3] J. W. Bruce and P. J. Giblin, Curves and Singularities. A Geometrical Introduction to Singularity Theory, Cambridge Univ. Press, Cambridge, 1984. | Zbl 0534.58008

[004] [6] D. L. Fidal, The existence of sextactic points, Math. Proc. Cambridge Philos. Soc. 96 (1984), 433-436. | Zbl 0568.58007

[005] [5] D. L. Fidal and P. J. Giblin, Generic 1-parameter families of caustics by reflexion in the plane, Math. Proc. Cambridge Philos. Soc. 96 (1984), 425-432. | Zbl 0561.58004

[006] [7] C. G. Gibson, Singular Points of Smooth Mappings, Pitman Research Notes in Mathematics 25, Pitman Publ., London, 1979. | Zbl 0426.58001

[007] [8] S. Izumiya and T. Sano, Generic affine differential geometry of plane curves, Proc. Edinburgh Math. Soc. (2) 41 (1998), 315-324. | Zbl 0965.53013

[008] [9] K. Nomizu and T. Sasaki, Affine Differential Geometry. Geometry of Affine Immersions, Cambridge Tracts in Math. 111, Cambridge Univ. Press, Cambridge, 1994. | Zbl 0834.53002