In this paper we review some of the concepts and results of V. I. Arnol’d [1] for curves in and extend them to curves and surfaces in .
@article{bwmeta1.element.bwnjournal-article-bcpv50z1p217bwm,
author = {Porteous, Ian},
title = {Some remarks on duality in $S^3$
},
journal = {Banach Center Publications},
volume = {50},
year = {1999},
pages = {217-226},
zbl = {0956.53001},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p217bwm}
}
Porteous, Ian. Some remarks on duality in $S^3$
. Banach Center Publications, Tome 50 (1999) pp. 217-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv50z1p217bwm/
[000] [1] V. I. Arnol'd, The geometry of spherical curves and the algebra of quaternions (in Russian), Uspekhi Mat. Nauk 50:1 (1995), 3-68; Engl. transl.: Russian Math. Surveys 50:1 (1995), 1-68.
[001] [2] I. R. Porteous, Geometric Differentiation for the Intelligence of Curves and Surfaces, Cambridge Univ. Press, Cambridge, 1994. | Zbl 0806.53001